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Anatomy of Standard Model Extensions 
at the Electroweak Scale

Heart: EW Breaking Sector

Higgs: Solution to the 
Hierarchy Problem

No Higgs: EW Symmetry 
Breaking Mechanism

Adipose Tissue (a.k.a. Fat): 
particles weakly coupled to EWSB sector
model-dependent, can be heavy (~10 TeV)



• To prove SUSY, test its heart: solution to hierarchy problem

• Focus on the top sector - largest SM Higgs coupling, must be 
at the weak scale (unless very finely tuned) 

• Why does it work:

The same constant - sharp prediction! Test it?
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Impossible to measure the 
quartic at the LHC!
[Challenge: prove me wrong!]

But: cubic:

Still, (probably) impossible to 
measure at the LHC!

[Maybe Higgsstrahlung in stop production? ILC?]

But also: stop mass terms!



Problem: many other contributions to stop masses 
(both SUSY and SUSY-breaking)

Physical observables: mass eigenstates

Observables: [Convention:                     ]



Express (11) matrix element in terms of eigenvalues + mixing angle:

big and unknown!

BUT, Sbottom masses have the same structure with the same           (enforced by                )

“SUSY-Yukawa sum rule”



Dimensionless version:

SUSY Prediction (at tree level):
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We want to separate the two, fixing the particle content
(which we assume could be tested by independent obser-
vations), while attempting to test the coupling relation.

Start with a SUSY-like particle content for the 3rd gen-
eration, i.e. a set of scalars with gauge charges
(

t̃L
b̃L

)
∼ (3, 2)1/6, t̃R ∼ (3, 1)2/3, b̃R ∼ (3, 1)−1/3. (1)

Leaving the SU(2)L × U(1)Y gauge symmetry unbroken
and working in the (t̃L, t̃R)-basis, the only allowed mass
terms are

M2
t̃ =

(
M2

L
M2

t

)
, M2

b̃
=

(
M2

L
M2

b

)
(2)

(in the MSSM these are just the soft masses). Within
the chosen particle content, we can parameterize EWSB
model-independently by inserting spurions Y t,b. The
(1, 1) entries of the top- and bottom-partner mass ma-
trices become

(M2
t̃ )11 = M2

L + v2Y t
11 , (M2

b̃
)11 = M2

L + v2Y b
11 (3)

where v = 246 GeV. Let us define an observable

Υ ≡ 1
v2

(
m2

t1c
2
t + m2

t2s
2
t −m2

b1c
2
b −m2

b2s
2
b

)
, (4)

where the top-partner eigenmasses mt1 < mt2, the
bottom-partner eigenmasses mb1 < mb2, and the mixing
angles θt and θb are all, in principle, measurable. (We
use the notation ct,b ≡ cos θt,b, st,b ≡ sin θt,b.) Writing
the top-partner mass matrix in terms of these quantities:

M2
t̃ =

(
m2

t1c
2
t + m2

t2s
2
t ctst(m2

t1 −m2
t2)

ctst(m2
t1 −m2

t2) m2
t1s

2
t + m2

t2c
2
t

)
, (5)

(similarly for M2
b̃
) and canceling the soft mass M2

L by
evaluating (M2

t̃
)11 − (M2

b̃
)11, we obtain

Υ = Y t
11 − Y b

11 . (6)

In other words, Υ probes the spurions only. Note, how-
ever, that Eq. (6) will receive non-trivial corrections be-
yond the tree level, since Υ is defined in terms of physical
(pole) masses, while in the above derivation all masses are
evaluated at the same scale.

At tree level, SUSY makes a definite prediction for Υ.
Using the standard sfermion tree-level mass matrices (see
e.g. [1]) and neglecting flavor mixing, we obtain

Υtree
SUSY =

1
v2

(
m̂2

t − m̂2
b + m2

Z cos2 θW cos 2β
)

=
{

0.39 for tanβ = 1
0.28 for tanβ →∞ (7)

Here the hats denote tree-level (or “bare”) masses.
The numerical values assume the renormalization scale
Q = 600 GeV (so that i.e. m̂t ≈ 153 GeV), but do
not depend strongly on the precise value of Q. This

FIG. 2: Distribution of Υ for a SuSpect random scan of
pMSSM parameter space. Scanning range was tanβ ∈ (5, 40);
MA, M1 ∈ (100, 500) GeV; M2, M3, |µ|, MQL, MtR, MbR ∈
(M1 + 50 GeV, 2 TeV); |At|, |Ab| < 1.5 TeV; random
sign(µ). EWSB, neutralino LSP, and experimental con-
straints (mH , ∆ρ, b→ sγ, aµ, mχ̃±1

bounds) were enforced.

prediction, which we call the SUSY-Yukawa sum rule,
relies on the same relation between the fermion and
scalar Higgs couplings which leads to the cancelation in
Fig. 1. Measuring Υ would therefore provide a powerful,
if somewhat indirect method of testing whether it is
SUSY that solves the hierarchy problem. (This argu-
ment is conceptually similar to the tests of the Little
Higgs cancellation mechanism, proposed in [2]. Earlier
examples of SUSY sum rules, devised within the
mSUGRA framework, can be found in [3].)

Radiative corrections to the SUSY prediction for Υ
can be important, since the sum rule typically involves
a rather delicate cancellation between stop and sbottom
mass terms. The full analytical expressions for the
radiative corrections to superpartner masses within the
MSSM can be found in [1], and a convenient numerical
implementation is provided by the SuSpect package [4].
The corrections depend on a large number of MSSM
parameters. To estimate their effect on Υ, we conducted
several scans of the MSSM parameter space using
SuSpect. We did not assume a particular model of
SUSY breaking, but allowed the weak-scale soft terms
to vary independently. A representative result for the
distribution of Υ is shown in Fig. 2. (As usual, the reader
must exercise caution in interpreting this plot, since
it necessarily reflects our sampling bias of parameter
space.) It shows that radiative corrections can change
the value of Υ significantly from its tree level predic-
tion (7). However, a measurement of |Υ| > O(1) would
disfavor TeV-scale SUSY as the solution to the hierarchy
problem. It should be noted that in a generic
theory with the particle content of Eq. (1),
the scalar-Higgs quartic couplings are only
constrained by perturbativity, leading to
the possible range of −16π2 <∼ Υ <∼ 16π2.
Moreover, if some of the parameters in the
sum rule are misidentified, an even broader

[Note:       dependence is                   in the large-           limit] 

Allowed range outside SUSY? Consider arbitrary perturbative quartic:



Loop Corrections:
Physical (pole) masses

-We can define             in terms of running masses/mixings evaluated at scale 

-The tree-level sum rule applies to            as long as               

- Corrections are power-suppressed:               

Observable:

              

0.28
depend on all SUSY masses



2

We want to separate the two, fixing the particle content
(which we assume could be tested by independent obser-
vations), while attempting to test the coupling relation.

Start with a SUSY-like particle content for the 3rd gen-
eration, i.e. a set of scalars with gauge charges
(

t̃L
b̃L

)
∼ (3, 2)1/6, t̃R ∼ (3, 1)2/3, b̃R ∼ (3, 1)−1/3. (1)

Leaving the SU(2)L × U(1)Y gauge symmetry unbroken
and working in the (t̃L, t̃R)-basis, the only allowed mass
terms are

M2
t̃ =

(
M2

L
M2

t

)
, M2

b̃
=

(
M2

L
M2

b

)
(2)

(in the MSSM these are just the soft masses). Within
the chosen particle content, we can parameterize EWSB
model-independently by inserting spurions Y t,b. The
(1, 1) entries of the top- and bottom-partner mass ma-
trices become

(M2
t̃ )11 = M2

L + v2Y t
11 , (M2

b̃
)11 = M2

L + v2Y b
11 (3)

where v = 246 GeV. Let us define an observable

Υ ≡ 1
v2

(
m2

t1c
2
t + m2

t2s
2
t −m2

b1c
2
b −m2

b2s
2
b

)
, (4)

where the top-partner eigenmasses mt1 < mt2, the
bottom-partner eigenmasses mb1 < mb2, and the mixing
angles θt and θb are all, in principle, measurable. (We
use the notation ct,b ≡ cos θt,b, st,b ≡ sin θt,b.) Writing
the top-partner mass matrix in terms of these quantities:

M2
t̃ =

(
m2

t1c
2
t + m2

t2s
2
t ctst(m2

t1 −m2
t2)

ctst(m2
t1 −m2

t2) m2
t1s

2
t + m2

t2c
2
t

)
, (5)

(similarly for M2
b̃
) and canceling the soft mass M2

L by
evaluating (M2

t̃
)11 − (M2

b̃
)11, we obtain

Υ = Y t
11 − Y b

11 . (6)

In other words, Υ probes the spurions only. Note, how-
ever, that Eq. (6) will receive non-trivial corrections be-
yond the tree level, since Υ is defined in terms of physical
(pole) masses, while in the above derivation all masses are
evaluated at the same scale.

At tree level, SUSY makes a definite prediction for Υ.
Using the standard sfermion tree-level mass matrices (see
e.g. [1]) and neglecting flavor mixing, we obtain

Υtree
SUSY =

1
v2

(
m̂2

t − m̂2
b + m2

Z cos2 θW cos 2β
)

=
{

0.39 for tanβ = 1
0.28 for tanβ →∞ (7)

Here the hats denote tree-level (or “bare”) masses.
The numerical values assume the renormalization scale
Q = 600 GeV (so that i.e. m̂t ≈ 153 GeV), but do
not depend strongly on the precise value of Q. This

FIG. 2: Distribution of Υ for a SuSpect random scan of
pMSSM parameter space. Scanning range was tanβ ∈ (5, 40);
MA, M1 ∈ (100, 500) GeV; M2, M3, |µ|, MQL, MtR, MbR ∈
(M1 + 50 GeV, 2 TeV); |At|, |Ab| < 1.5 TeV; random
sign(µ). EWSB, neutralino LSP, and experimental con-
straints (mH , ∆ρ, b→ sγ, aµ, mχ̃±1

bounds) were enforced.

prediction, which we call the SUSY-Yukawa sum rule,
relies on the same relation between the fermion and
scalar Higgs couplings which leads to the cancelation in
Fig. 1. Measuring Υ would therefore provide a powerful,
if somewhat indirect method of testing whether it is
SUSY that solves the hierarchy problem. (This argu-
ment is conceptually similar to the tests of the Little
Higgs cancellation mechanism, proposed in [2]. Earlier
examples of SUSY sum rules, devised within the
mSUGRA framework, can be found in [3].)

Radiative corrections to the SUSY prediction for Υ
can be important, since the sum rule typically involves
a rather delicate cancellation between stop and sbottom
mass terms. The full analytical expressions for the
radiative corrections to superpartner masses within the
MSSM can be found in [1], and a convenient numerical
implementation is provided by the SuSpect package [4].
The corrections depend on a large number of MSSM
parameters. To estimate their effect on Υ, we conducted
several scans of the MSSM parameter space using
SuSpect. We did not assume a particular model of
SUSY breaking, but allowed the weak-scale soft terms
to vary independently. A representative result for the
distribution of Υ is shown in Fig. 2. (As usual, the reader
must exercise caution in interpreting this plot, since
it necessarily reflects our sampling bias of parameter
space.) It shows that radiative corrections can change
the value of Υ significantly from its tree level predic-
tion (7). However, a measurement of |Υ| > O(1) would
disfavor TeV-scale SUSY as the solution to the hierarchy
problem. It should be noted that in a generic
theory with the particle content of Eq. (1),
the scalar-Higgs quartic couplings are only
constrained by perturbativity, leading to
the possible range of −16π2 <∼ Υ <∼ 16π2.
Moreover, if some of the parameters in the
sum rule are misidentified, an even broader

- “Order-one” corrections, due to the few-% level cancellation in the tree-level sum rule

- The prediction gets sharper as more superpartner masses are measured! 
(ILC would greatly help here - work in progress with Mike Saelim)

- Still, predicted range << range allowed outside SUSY



Measuring Stop and Sbottom Masses at 
the LHC

• We study two reactions: 

• Both reactions are “generic”: they occur in large parts of parameter space 
(though not guaranteed, of course)

• To simplify things, we choose the MSSM parameter point such that both 
reactions (a) have branching ratios of 1, and (b) have no significant SUSY 

backgrounds  

3

range is possible. For example, if the
mixing angle measurements were off by π/2,
the right-hand side of Eq. (4) would contain
the right-right elements of the squark mass
matrices, which are of course independent for
stop and sbottom, so any value of Υ is in
principle possible. Thus, even with radiative
corrections included, the SUSY-Yukawa sum rule
presents a useful and non-trivial consistency
check on SUSY.
It is also interesting to ask if the

sum rule can be used as a tool for model
discrimination. Recently, several SUSY
‘‘look-alikes", i.e. models whose LHC
signatures are similar to SUSY but arise
from completely different underlying physics,
have been studied. The most studied examples
are universal extra dimensions (UED) [5]
and little Higgs with T-parity (LHT) [6]
models. These models contain particles with
the quantum numbers of Eq. (1), but instead of
scalars, they are spin-1/2 fermions. (The
minimal LHT model does not contain a b̃R

counterpart; however, such a particle can
easily be added.) This leads to a different
Higgs coupling structure: for example, the
4-point coupling in Fig. 1 (b) does not exist,
at renormalizable level, in these theories.
As a result, UED and LHT predictions for Υ are
generically different from SUSY, at least at
the tree level. As an example, the tree-level
prediction of the minimal LHT model is

Υtree
LHT = − g′

2
√

10
mbH

mAH

+O
(

v2

f2

)
, (8)

where mbH and mAH are the masses of the
heavy, T-odd partners of the left-handed
b quarks and the hypercharge gauge boson,
respectively. In contrast to SUSY, Υ is
always negative at tree level in the LHT;
for typical parameter values Υ ≈ −0.5.
Unfortunately, radiative corrections can
shift Υ in SUSY significantly, including
changing the sign, as can be seen in
Fig. 2. Presumably, the LHT prediction will
also receive important loop corrections,
although they have not yet been calculated.
Depending on the resulting ranges and on
the measured value of Υ, the measurement
may be interpreted as supporting one or
the other model, but it seems unlikely
that a sharp model-discriminating statement
could be made. On the other hand, one
should keep in mind that a measurement
of parameters not directly entering the
sum rule (such as the gluino mass) would

generally shrink the range of possible Υ
values in each model by constraining the
possible radiative corrections, improving
the model-discriminating power of this
observable.

Measuring all the ingredients of Υ is very difficult at a
hadron collider, and the determination of the complete
3rd-generation sfermion spectrum and mixing angles will
most likely have to be performed at a future lepton ma-
chine. However, for favorable MSSM parameters, some
progress can be made at the LHC. In particular,
if some of the ingredients of the sum rule can
be measured, and the sum rule is assumed to
be valid, it can be used to put interesting
constraints on the remaining ingredients.
The easiest terms to measure at the LHC are
the masses of the lightest stop and sbottom
squarks. To understand the implications of
such a measurement, let us rewrite Υ as

Υ =
1
v2

(
m2

t1 −m2
b1

)

︸ ︷︷ ︸
Υ′

+
s2

t

v2

(
m2

t2 −m2
t1

)

︸ ︷︷ ︸
∆Υt

− s2
b

v2

(
m2

b2 −m2
b1

)

︸ ︷︷ ︸
∆Υb

.

(9)
Assuming that the SUSY framework is correct, a
measurement of Υ′ together with the sum rule
can be used to constrain the third-generation
mixing angles, even if nothing is known about
the masses of the heavier superpartners t̃2
and b̃2. This is illustrated by the scatter
plots in Fig. 3. If Υ′ is small, then either
both t̃1 and b̃1 must be mostly left-handed so
that ∆Υt,b is small, or the two ∆Υ’s must
precisely cancel each other. (Obviously,
the second possibility is less likely, as
reflected in the distribution of points in
Fig. 3 (b).) A large and negative Υ′ would
require a right-handed t̃1, whereas a large
and positive Υ′ requires a right-handed b̃1.
Thus, mass measurements together with the sum
rule can provide non-trivial information on
the mixing angles, which are difficult or
impossible to measure directly at the LHC.
(For some proposals for measuring the stop
mixing angle, see Refs. [7, 8].)

Prospects at the LHC: a Case Study — The MSSM pa-
rameter point we will consider is defined by the following
weak-scale inputs (from here on all masses in GeV unless
otherwise noted):

tanβ M1 M2 M3 µ MA MQ3L MtR At

10 100 450 450 400 600 310.6 778.1 392.6

with all other A-terms zero and all other sfermion soft
masses set at 1 TeV. The relevant spectrum (calculated
with SuSpect) is
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FIG. 3: Scatter plot of pMSSM parameter points produced by the SuSpect scan from Fig. 2, showing the correlations between
the stop and sbottom mixing angles for different ranges of Υ′. Each 0.005×0.005 bin is colored according to the number of scan
points contained in it, with hot (bright) and cold (dark) colors indicating high and low scan point density, and unpopulated bins
left uncolored. These correlations are a direct consequence of the SUSY-Yukawa Sum Rule, and any measurement of Υ′ >∼ 0
provides valuable information about the sbottom mixing angle.

mt1 mt2 st mb1 mb2 sb mg̃ mχ̃0
1

371 800 -0.095 341 1000 -0.011 525 98

At this benchmark point, Υ = 0.423, and Υ′ = 0.350.
We will show below that the LHC can measure Υ′ rather
accurately.

To measure the t̃1 and b̃1 masses, we propose to use
kinematic edges, the classical MT2 variable [9], and
recently proposed “subsystem-MT2” variables [10] to
analyze the two processes

(I) g̃ → b̃1b→ bbχ0
1 via gluino pair production,

(II) t̃1 → tχ0
1 via stop pair production

(where we omit antiparticle indices). For our benchmark
point each of the above decays has 100% branch-
ing fraction, completely eliminating irreducible
SUSY backgrounds to the measurements discussed
below. The process (I) yields the g̃, b̃1, and χ0

1 masses,
and the process (II) provides mt1. Below, we briefly out-
line these measurements, and estimate their accuracy;
the details of this analysis will be presented in [11].

We ignore issues related to hadronization and ISR
by performing the analysis at leading order in αs and
at parton level. We use MadGraph/MadEvent (MGME)
package [12] to simulate gluino and stop production,
and BRIDGE [13] to simulate decays. We use the
CTEQ6l1 [14] parton distribution functions through-
out, with the MGME default (pT -dependent) factoriza-
tion/renormalization scale choice. To roughly model de-
tector response to jets and electrons, we introduce a
Gaussian smearing of their energies according to [15]
∆Ej

Ej
=

50%√
E GeV

⊕3% ,
∆Ee

Ee
=

10%√
E GeV

⊕0.7% . (10)

(I) Measuring the b̃1, g̃, χ̃0
1 masses — We study

gluino pair production with subsequent decay into
4b + 2χ̃0

1 at the LHC with
√

s = 14 TeV and 10 fb−1

of integrated luminosity. The selection cuts are as
follows: (a) E/T > 200 GeV, (b) exactly 4 tagged
b-jets, (c) pmax

T > 100 GeV, (d) pb−jet
T > 40 GeV,

(e) |η| < 2.5,∆R > 0.4. The gluino pair production
cross section is σg̃g̃ ≈ 11.6 pb. We assumed a b-tag
efficiency of 0.6 and b-mistag rates for c-,
τ-, and light quark/gluon jets of 0.1, 0.1 and
0.01, respectively, leaving about 1.5 pb of fully b-tagged
signal. The other kinematic cuts (a, c-e) have an
efficiency of 32%, yielding 480 fb, or about 4800 signal
events at 10 fb−1.

We computed the cross sections of the two main SM
background processes, 4j + Z with Z → νν̄, and tt̄ with
one or both tops decaying leptonically. The cross sec-
tions, including efficiencies of the cuts (a-e), are <∼ 10 fb
and 25 fb, respectively. Thus, we conclude that the SM
backgrounds can be effectively eliminated by cuts, and
do not take them into account further in the mass deter-
mination analysis.

The main background for mass determination comes
from combinatorics. Consider the dijet invariant mass
Mbb. If both b’s come from the same decay chain, the
distribution has a kinematic edge at

Mmax
bb =

√
(m2

g̃ −m2
b1)(m

2
b1 −m2

χ̃0
1
)

m2
b1

= 382.3 GeV.

(11)
For each event, there are three possible ways to assign
4 b’s to two decay chains, and the Mbb distributions of
the wrong combinations extend well beyond Mmax

bb . If all
combinations are included, the edge is washed out. We



Process 1: 

Final state: 4 b-jets + MET

SM Backgrounds:

high rate

Cuts (standard): 4 b-tags, plus
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FIG. 3: Scatter plot of pMSSM parameter points produced by the SuSpect scan from Fig. 2, showing the correlations between
the stop and sbottom mixing angles for different ranges of Υ′. Each 0.005×0.005 bin is colored according to the number of scan
points contained in it, with hot (bright) and cold (dark) colors indicating high and low scan point density, and unpopulated bins
left uncolored. These correlations are a direct consequence of the SUSY-Yukawa Sum Rule, and any measurement of Υ′ >∼ 0
provides valuable information about the sbottom mixing angle.
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At this benchmark point, Υ = 0.423, and Υ′ = 0.350.
We will show below that the LHC can measure Υ′ rather
accurately.

To measure the t̃1 and b̃1 masses, we propose to use
kinematic edges, the classical MT2 variable [9], and
recently proposed “subsystem-MT2” variables [10] to
analyze the two processes

(I) g̃ → b̃1b→ bbχ0
1 via gluino pair production,

(II) t̃1 → tχ0
1 via stop pair production

(where we omit antiparticle indices). For our benchmark
point each of the above decays has 100% branch-
ing fraction, completely eliminating irreducible
SUSY backgrounds to the measurements discussed
below. The process (I) yields the g̃, b̃1, and χ0

1 masses,
and the process (II) provides mt1. Below, we briefly out-
line these measurements, and estimate their accuracy;
the details of this analysis will be presented in [11].

We ignore issues related to hadronization and ISR
by performing the analysis at leading order in αs and
at parton level. We use MadGraph/MadEvent (MGME)
package [12] to simulate gluino and stop production,
and BRIDGE [13] to simulate decays. We use the
CTEQ6l1 [14] parton distribution functions through-
out, with the MGME default (pT -dependent) factoriza-
tion/renormalization scale choice. To roughly model de-
tector response to jets and electrons, we introduce a
Gaussian smearing of their energies according to [15]
∆Ej

Ej
=
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⊕3% ,
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=
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(I) Measuring the b̃1, g̃, χ̃0
1 masses — We study

gluino pair production with subsequent decay into
4b + 2χ̃0

1 at the LHC with
√

s = 14 TeV and 10 fb−1

of integrated luminosity. The selection cuts are as
follows: (a) E/T > 200 GeV, (b) exactly 4 tagged
b-jets, (c) pmax

T > 100 GeV, (d) pb−jet
T > 40 GeV,

(e) |η| < 2.5,∆R > 0.4. The gluino pair production
cross section is σg̃g̃ ≈ 11.6 pb. We assumed a b-tag
efficiency of 0.6 and b-mistag rates for c-,
τ-, and light quark/gluon jets of 0.1, 0.1 and
0.01, respectively, leaving about 1.5 pb of fully b-tagged
signal. The other kinematic cuts (a, c-e) have an
efficiency of 32%, yielding 480 fb, or about 4800 signal
events at 10 fb−1.

We computed the cross sections of the two main SM
background processes, 4j + Z with Z → νν̄, and tt̄ with
one or both tops decaying leptonically. The cross sec-
tions, including efficiencies of the cuts (a-e), are <∼ 10 fb
and 25 fb, respectively. Thus, we conclude that the SM
backgrounds can be effectively eliminated by cuts, and
do not take them into account further in the mass deter-
mination analysis.

The main background for mass determination comes
from combinatorics. Consider the dijet invariant mass
Mbb. If both b’s come from the same decay chain, the
distribution has a kinematic edge at

Mmax
bb =

√
(m2

g̃ −m2
b1)(m

2
b1 −m2

χ̃0
1
)

m2
b1

= 382.3 GeV.

(11)
For each event, there are three possible ways to assign
4 b’s to two decay chains, and the Mbb distributions of
the wrong combinations extend well beyond Mmax

bb . If all
combinations are included, the edge is washed out. We

After cuts: Ignore backgrounds



Kinematic Edge

[6 values in each event, 4 are from wrong 
pairings] [cleaned up with cuts]
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FIG. 3: Scatter plot of pMSSM parameter points produced by the SuSpect scan from Fig. 2, showing the correlations between
the stop and sbottom mixing angles for different ranges of Υ′. Each 0.005×0.005 bin is colored according to the number of scan
points contained in it, with hot (bright) and cold (dark) colors indicating high and low scan point density, and unpopulated bins
left uncolored. These correlations are a direct consequence of the SUSY-Yukawa Sum Rule, and any measurement of Υ′ >∼ 0
provides valuable information about the sbottom mixing angle.
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At this benchmark point, Υ = 0.423, and Υ′ = 0.350.
We will show below that the LHC can measure Υ′ rather
accurately.

To measure the t̃1 and b̃1 masses, we propose to use
kinematic edges, the classical MT2 variable [9], and
recently proposed “subsystem-MT2” variables [10] to
analyze the two processes

(I) g̃ → b̃1b→ bbχ0
1 via gluino pair production,

(II) t̃1 → tχ0
1 via stop pair production

(where we omit antiparticle indices). For our benchmark
point each of the above decays has 100% branch-
ing fraction, completely eliminating irreducible
SUSY backgrounds to the measurements discussed
below. The process (I) yields the g̃, b̃1, and χ0

1 masses,
and the process (II) provides mt1. Below, we briefly out-
line these measurements, and estimate their accuracy;
the details of this analysis will be presented in [11].

We ignore issues related to hadronization and ISR
by performing the analysis at leading order in αs and
at parton level. We use MadGraph/MadEvent (MGME)
package [12] to simulate gluino and stop production,
and BRIDGE [13] to simulate decays. We use the
CTEQ6l1 [14] parton distribution functions through-
out, with the MGME default (pT -dependent) factoriza-
tion/renormalization scale choice. To roughly model de-
tector response to jets and electrons, we introduce a
Gaussian smearing of their energies according to [15]
∆Ej

Ej
=

50%√
E GeV

⊕3% ,
∆Ee

Ee
=

10%√
E GeV

⊕0.7% . (10)

(I) Measuring the b̃1, g̃, χ̃0
1 masses — We study

gluino pair production with subsequent decay into
4b + 2χ̃0

1 at the LHC with
√

s = 14 TeV and 10 fb−1

of integrated luminosity. The selection cuts are as
follows: (a) E/T > 200 GeV, (b) exactly 4 tagged
b-jets, (c) pmax

T > 100 GeV, (d) pb−jet
T > 40 GeV,

(e) |η| < 2.5,∆R > 0.4. The gluino pair production
cross section is σg̃g̃ ≈ 11.6 pb. We assumed a b-tag
efficiency of 0.6 and b-mistag rates for c-,
τ-, and light quark/gluon jets of 0.1, 0.1 and
0.01, respectively, leaving about 1.5 pb of fully b-tagged
signal. The other kinematic cuts (a, c-e) have an
efficiency of 32%, yielding 480 fb, or about 4800 signal
events at 10 fb−1.

We computed the cross sections of the two main SM
background processes, 4j + Z with Z → νν̄, and tt̄ with
one or both tops decaying leptonically. The cross sec-
tions, including efficiencies of the cuts (a-e), are <∼ 10 fb
and 25 fb, respectively. Thus, we conclude that the SM
backgrounds can be effectively eliminated by cuts, and
do not take them into account further in the mass deter-
mination analysis.

The main background for mass determination comes
from combinatorics. Consider the dijet invariant mass
Mbb. If both b’s come from the same decay chain, the
distribution has a kinematic edge at

Mmax
bb =

√
(m2

g̃ −m2
b1)(m

2
b1 −m2

χ̃0
1
)

m2
b1

= 382.3 GeV.

(11)
For each event, there are three possible ways to assign
4 b’s to two decay chains, and the Mbb distributions of
the wrong combinations extend well beyond Mmax

bb . If all
combinations are included, the edge is washed out. We
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FIG. 3: Scatter plot of pMSSM parameter points produced by the SuSpect scan from Fig. 2, showing the correlations between
the stop and sbottom mixing angles for different ranges of Υ′. Each 0.005×0.005 bin is colored according to the number of scan
points contained in it, with hot (bright) and cold (dark) colors indicating high and low scan point density, and unpopulated bins
left uncolored. These correlations are a direct consequence of the SUSY-Yukawa Sum Rule, and any measurement of Υ′ >∼ 0
provides valuable information about the sbottom mixing angle.
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At this benchmark point, Υ = 0.423, and Υ′ = 0.350.
We will show below that the LHC can measure Υ′ rather
accurately.

To measure the t̃1 and b̃1 masses, we propose to use
kinematic edges, the classical MT2 variable [9], and
recently proposed “subsystem-MT2” variables [10] to
analyze the two processes

(I) g̃ → b̃1b→ bbχ0
1 via gluino pair production,

(II) t̃1 → tχ0
1 via stop pair production

(where we omit antiparticle indices). For our benchmark
point each of the above decays has 100% branch-
ing fraction, completely eliminating irreducible
SUSY backgrounds to the measurements discussed
below. The process (I) yields the g̃, b̃1, and χ0
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and the process (II) provides mt1. Below, we briefly out-
line these measurements, and estimate their accuracy;
the details of this analysis will be presented in [11].

We ignore issues related to hadronization and ISR
by performing the analysis at leading order in αs and
at parton level. We use MadGraph/MadEvent (MGME)
package [12] to simulate gluino and stop production,
and BRIDGE [13] to simulate decays. We use the
CTEQ6l1 [14] parton distribution functions through-
out, with the MGME default (pT -dependent) factoriza-
tion/renormalization scale choice. To roughly model de-
tector response to jets and electrons, we introduce a
Gaussian smearing of their energies according to [15]
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of integrated luminosity. The selection cuts are as
follows: (a) E/T > 200 GeV, (b) exactly 4 tagged
b-jets, (c) pmax
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(e) |η| < 2.5,∆R > 0.4. The gluino pair production
cross section is σg̃g̃ ≈ 11.6 pb. We assumed a b-tag
efficiency of 0.6 and b-mistag rates for c-,
τ-, and light quark/gluon jets of 0.1, 0.1 and
0.01, respectively, leaving about 1.5 pb of fully b-tagged
signal. The other kinematic cuts (a, c-e) have an
efficiency of 32%, yielding 480 fb, or about 4800 signal
events at 10 fb−1.

We computed the cross sections of the two main SM
background processes, 4j + Z with Z → νν̄, and tt̄ with
one or both tops decaying leptonically. The cross sec-
tions, including efficiencies of the cuts (a-e), are <∼ 10 fb
and 25 fb, respectively. Thus, we conclude that the SM
backgrounds can be effectively eliminated by cuts, and
do not take them into account further in the mass deter-
mination analysis.

The main background for mass determination comes
from combinatorics. Consider the dijet invariant mass
Mbb. If both b’s come from the same decay chain, the
distribution has a kinematic edge at
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For each event, there are three possible ways to assign
4 b’s to two decay chains, and the Mbb distributions of
the wrong combinations extend well beyond Mmax

bb . If all
combinations are included, the edge is washed out. We
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find that the combinatoric background can be reduced
with simple cuts: very generally, the directions of jets
from the same decay chain should be correlated, and the
pairings with the largest invariant masses are likely to be
incorrect. Denoting the two b’s assigned to each decay
chain as (1,2) and (3,4) respectively, we drop the com-
bination with the largest Max[M12, M34] in each event,
and require Max[∆R12,∆R34] < 2.5. The resulting dis-
tribution shows a clear edge. We fit to it with a simple
trial-PDF, the linear kink function, which we will use
throughout this analysis:

x1 K x2

1

rK
r2

An unbinned maximum-likelihood fit reliably finds the
edge position K, yielding a measurement of the kine-
matic edge position Mbb

max
meas = (395 ± 5) GeV. This is

quite close to the correct value, Eq. (11), but the use of
the simple linear fit function clearly does introduce a sys-
tematic error into the edge measurement. To account for
this effect, we will simply assume a systematic error of
3 times the statistical error for each edge measurement;
this is sufficient to bring across the main points of our
analysis. More sophisticated methods for kinematic edge
extraction exist in the literature (e.g. [7]), and would be
used in practice.

The position of the kinematic edge provides one func-
tion of the three unknown masses; two more are required
to solve for the spectrum. These can be obtained from the
endpoints of distributions of events in MT2-subsystem
variables [10] M220

T2 (0) and M210
T2 (0), predicted to be at

M210
T2 (0)max =

[(m2
b1 −m2

χ̃0
1
)(m2

g̃ −m2
χ̃0

1
)]1/2

mg̃
= 320.9 GeV ,

M220
T2 (0)max = mg̃ −m2

χ̃0
1
/mg̃ = 506.7 GeV. (12)

Of the several possible MT2 variables for this system,
these two show the clearest edges, allowing precise mass
determination; the complete analysis of all MT2 variables
will be presented in [11].

To calculate M210
T2 for each event, we must divide the

four b’s into an upstream and a downstream pair, giving
6 possible combinations. Fig. 4 (a) shows the complete
M210

T2 (0) distribution; the edge is completely washed out.
It turns out that of the 5 possible wrong pairings, the two
where b’s from the same decay chain are put into up- and
down-stream pairs are the most problematic, since their
M210

T2 distributions extend significantly beyond the edge.
Based on this observation, we developed two techniques
to reduce the combinatorial error. Firstly, for each event
we can simply drop the two largest MT2’s. The corre-
sponding distribution is shown in Fig. 4 (b). Secondly,
we can use our measurement of the kinematic edge. For
each event there are three possible ways to assign the 4
b’s to two decay chains. For some events (about 30% in

mass theory median mean 68% c.l. 95% c.l. process

mb1 341 324 332 (316, 356) (308, 432) I

mg̃ 525 514 525 (508, 552) (500, 634) I

mχ̃0
1

98 – – (45, 115) (45, 179) I + LEP

mt1 371 354 375 (356, 414) (352, 516) I + II

TABLE I: Mass measurements (all in GeV), assuming Gaus-
sian edge measurement uncertainties. We imposed the lower
bound mχ̃0

1
> 45 GeV, which generically follows from the

LEP invisible Z decay width measurement [17].

our sample) we find that for two of these combinations, at
least one same-chain invariant mass is larger than Mmax

bb ,
whereas for the other combination both same-chain in-
variant masses are smaller – this combination must be
the correct one. Using only those events and keeping
only the correct decay chain assignments, we obtain the
distribution of M210

T2 (0) shown in Fig. 4 (c). We per-
formed linear kink fits on the distributions in Fig. 4 (b)
and (c), and found that they are in agreement, indicat-
ing the robustness of our approach. Combining the two
fits yields M210

T2 (0)max
meas = (314.0 ± 4.6) GeV. We used a

similar method to extract the M220
T2 edge, and obtained

M220
T2 (0)max

meas = (492.1 ± 4.8) GeV. As for the kinematic
edge, the linear fit function works rather well, but it does
introduce some systematic error into the edge measure-
ments, which we again model by inflating the error bars
by a factor of 3. To summarize, the measured edges are:

Mbb
max
meas = (395 ± 15) GeV ,

M210
T2 (0)max

meas = (314 ± 14) GeV ,

M220
T2 (0)max

meas = (492 ± 14) GeV . (13)

Each of these edges defines a subvolume of
(mg̃, mχ̃0

1
, mb1)-space, which yields the mass mea-

surements given in Table I.
(II) Measuring the t̃1-mass — We simulate pp →

t̃1t̃∗1 → tt̄ + 2χ̃0
1 for 100 fb−1 integrated luminosity. The

signal production cross section is 2 pb. The dominant
irreducible background is (Z → νν)tt̄ with σBG = 135
fb. Following [16], we demand two fully reconstructed
hadronic tops in each event, in order to use the classical
MT2 variable [9]. Our signal cuts are (a) exactly 2 tagged
b-jets and at least 4 other jets with pT > 30 GeV and
|η| > 2.5 (b) lepton veto (c) ∆R > 0.4 between all the b-
and light jets (d) E/T > 100 GeV (e) HT > 500 GeV (e)
pmax

T > 100 GeV (f) require 4j to reconstruct to two W ’s
with a mass window of (60, 100) GeV and the two W ’s to
reconstruct with the two b’s to two tops with a mass win-
dow of (140, 200) GeV. After cuts we are left with 1481
signal and 105 background events. Plotting the classical
MT2 distribution we see a clear edge, and using the linear
kink fit trial PDF with error scaling yields

MT2(0)max
meas = (340 ± 4) GeV. (14)

Compare this to the analytical prediction [18]
MT2(0)max = 336.7 GeV. Combined with the mχ̃0

1

Theory: Measurement (10 fb-1, 14 TeV):
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Figure 4: The subsystem M (n,p,c)
T2 variables which are available for (a) n = 1 and (b) n = 2 events.

The advantage of using this shorthand notation will become apparent very shortly. Notice

that not all of the µ parameters defined in (4.1) are independent. For a given maximum

value of n, the total number of µ parameters from (4.1) is the same as the total number of

subsystem MT2 variables and is given by (2.24). All of those µ parameters are functions of

just n+1 masses Mi, 0 ≤ i ≤ n, as indicated by eq. (2.23). Therefore, the µ parameters must

obey certain relations, whose number is given by (2.25). For example, for n ≤ 2, we have a

total of four µ parameters: µ(1,1,0), µ(2,1,0), µ(2,2,0) and µ(2,2,1), and only three masses: M0,

M1 and M2, so that there is one constraint:

µ(2,1,0)

(

µ(2,2,0) − µ(2,2,1)

)

= µ2
(1,1,0) . (4.2)

4.1 The subsystem variable M (1,1,0)
T2

We start with the simplest case of n = 1 shown in Fig. 4(a). Here M (1,1,0)
T2 is the only possibil-

ity, and it coincides with the conventional MT2 variable, as indicated by (3.7). Therefore, the

previous results in the literature which have been derived for the conventional MT2 variable

(3.7), would still apply. In particular, in the limit of pT = 0, the upper endpoint M (1,1,0)
T2,max

depends on the test mass M̃0 as follows [32]

M (1,1,0)
T2,max(M̃0, pT = 0) = µ(1,1,0) +

√

µ2
(1,1,0) + M̃2

0 , (4.3)

where the parameter µ(1,1,0) is defined in terms of the physical masses M1 and M0 according

to eq. (4.1):

µ(1,1,0) ≡
M1

2

(

1 −
M2

0

M2
1

)

=
M2

1 − M2
0

2M1
. (4.4)

As usual, the endpoint (4.3) can be interpreted as the mass M1 of the parent particle X1, so

that eq. (4.3) provides a relation between the masses of X0 and X1. In the early literature

on MT2, this relation had to be derived numerically, by building the MT2 distributions for
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find that the combinatoric background can be reduced
with simple cuts: very generally, the directions of jets
from the same decay chain should be correlated, and the
pairings with the largest invariant masses are likely to be
incorrect. Denoting the two b’s assigned to each decay
chain as (1,2) and (3,4) respectively, we drop the com-
bination with the largest Max[M12, M34] in each event,
and require Max[∆R12,∆R34] < 2.5. The resulting dis-
tribution shows a clear edge. We fit to it with a simple
trial-PDF, the linear kink function, which we will use
throughout this analysis:

x1 K x2

1

rK
r2

An unbinned maximum-likelihood fit reliably finds the
edge position K, yielding a measurement of the kine-
matic edge position Mbb

max
meas = (395 ± 5) GeV. This is

quite close to the correct value, Eq. (11), but the use of
the simple linear fit function clearly does introduce a sys-
tematic error into the edge measurement. To account for
this effect, we will simply assume a systematic error of
3 times the statistical error for each edge measurement;
this is sufficient to bring across the main points of our
analysis. More sophisticated methods for kinematic edge
extraction exist in the literature (e.g. [7]), and would be
used in practice.

The position of the kinematic edge provides one func-
tion of the three unknown masses; two more are required
to solve for the spectrum. These can be obtained from the
endpoints of distributions of events in MT2-subsystem
variables [10] M220

T2 (0) and M210
T2 (0), predicted to be at

M210
T2 (0)max =

[(m2
b1 −m2

χ̃0
1
)(m2

g̃ −m2
χ̃0

1
)]1/2

mg̃
= 320.9 GeV ,

M220
T2 (0)max = mg̃ −m2

χ̃0
1
/mg̃ = 506.7 GeV. (12)

Of the several possible MT2 variables for this system,
these two show the clearest edges, allowing precise mass
determination; the complete analysis of all MT2 variables
will be presented in [11].

To calculate M210
T2 for each event, we must divide the

four b’s into an upstream and a downstream pair, giving
6 possible combinations. Fig. 4 (a) shows the complete
M210

T2 (0) distribution; the edge is completely washed out.
It turns out that of the 5 possible wrong pairings, the two
where b’s from the same decay chain are put into up- and
down-stream pairs are the most problematic, since their
M210

T2 distributions extend significantly beyond the edge.
Based on this observation, we developed two techniques
to reduce the combinatorial error. Firstly, for each event
we can simply drop the two largest MT2’s. The corre-
sponding distribution is shown in Fig. 4 (b). Secondly,
we can use our measurement of the kinematic edge. For
each event there are three possible ways to assign the 4
b’s to two decay chains. For some events (about 30% in

mass theory median mean 68% c.l. 95% c.l. process

mb1 341 324 332 (316, 356) (308, 432) I

mg̃ 525 514 525 (508, 552) (500, 634) I

mχ̃0
1

98 – – (45, 115) (45, 179) I + LEP

mt1 371 354 375 (356, 414) (352, 516) I + II

TABLE I: Mass measurements (all in GeV), assuming Gaus-
sian edge measurement uncertainties. We imposed the lower
bound mχ̃0

1
> 45 GeV, which generically follows from the

LEP invisible Z decay width measurement [17].

our sample) we find that for two of these combinations, at
least one same-chain invariant mass is larger than Mmax

bb ,
whereas for the other combination both same-chain in-
variant masses are smaller – this combination must be
the correct one. Using only those events and keeping
only the correct decay chain assignments, we obtain the
distribution of M210

T2 (0) shown in Fig. 4 (c). We per-
formed linear kink fits on the distributions in Fig. 4 (b)
and (c), and found that they are in agreement, indicat-
ing the robustness of our approach. Combining the two
fits yields M210

T2 (0)max
meas = (314.0 ± 4.6) GeV. We used a

similar method to extract the M220
T2 edge, and obtained

M220
T2 (0)max

meas = (492.1 ± 4.8) GeV. As for the kinematic
edge, the linear fit function works rather well, but it does
introduce some systematic error into the edge measure-
ments, which we again model by inflating the error bars
by a factor of 3. To summarize, the measured edges are:

Mbb
max
meas = (395 ± 15) GeV ,

M210
T2 (0)max

meas = (314 ± 14) GeV ,

M220
T2 (0)max

meas = (492 ± 14) GeV . (13)

Each of these edges defines a subvolume of
(mg̃, mχ̃0

1
, mb1)-space, which yields the mass mea-

surements given in Table I.
(II) Measuring the t̃1-mass — We simulate pp →

t̃1t̃∗1 → tt̄ + 2χ̃0
1 for 100 fb−1 integrated luminosity. The

signal production cross section is 2 pb. The dominant
irreducible background is (Z → νν)tt̄ with σBG = 135
fb. Following [16], we demand two fully reconstructed
hadronic tops in each event, in order to use the classical
MT2 variable [9]. Our signal cuts are (a) exactly 2 tagged
b-jets and at least 4 other jets with pT > 30 GeV and
|η| > 2.5 (b) lepton veto (c) ∆R > 0.4 between all the b-
and light jets (d) E/T > 100 GeV (e) HT > 500 GeV (e)
pmax

T > 100 GeV (f) require 4j to reconstruct to two W ’s
with a mass window of (60, 100) GeV and the two W ’s to
reconstruct with the two b’s to two tops with a mass win-
dow of (140, 200) GeV. After cuts we are left with 1481
signal and 105 background events. Plotting the classical
MT2 distribution we see a clear edge, and using the linear
kink fit trial PDF with error scaling yields

MT2(0)max
meas = (340 ± 4) GeV. (14)

Compare this to the analytical prediction [18]
MT2(0)max = 336.7 GeV. Combined with the mχ̃0

1

5

find that the combinatoric background can be reduced
with simple cuts: very generally, the directions of jets
from the same decay chain should be correlated, and the
pairings with the largest invariant masses are likely to be
incorrect. Denoting the two b’s assigned to each decay
chain as (1,2) and (3,4) respectively, we drop the com-
bination with the largest Max[M12, M34] in each event,
and require Max[∆R12,∆R34] < 2.5. The resulting dis-
tribution shows a clear edge. We fit to it with a simple
trial-PDF, the linear kink function, which we will use
throughout this analysis:
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An unbinned maximum-likelihood fit reliably finds the
edge position K, yielding a measurement of the kine-
matic edge position Mbb

max
meas = (395 ± 5) GeV. This is

quite close to the correct value, Eq. (11), but the use of
the simple linear fit function clearly does introduce a sys-
tematic error into the edge measurement. To account for
this effect, we will simply assume a systematic error of
3 times the statistical error for each edge measurement;
this is sufficient to bring across the main points of our
analysis. More sophisticated methods for kinematic edge
extraction exist in the literature (e.g. [7]), and would be
used in practice.

The position of the kinematic edge provides one func-
tion of the three unknown masses; two more are required
to solve for the spectrum. These can be obtained from the
endpoints of distributions of events in MT2-subsystem
variables [10] M220

T2 (0) and M210
T2 (0), predicted to be at
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mg̃
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1
/mg̃ = 506.7 GeV. (12)

Of the several possible MT2 variables for this system,
these two show the clearest edges, allowing precise mass
determination; the complete analysis of all MT2 variables
will be presented in [11].

To calculate M210
T2 for each event, we must divide the

four b’s into an upstream and a downstream pair, giving
6 possible combinations. Fig. 4 (a) shows the complete
M210

T2 (0) distribution; the edge is completely washed out.
It turns out that of the 5 possible wrong pairings, the two
where b’s from the same decay chain are put into up- and
down-stream pairs are the most problematic, since their
M210

T2 distributions extend significantly beyond the edge.
Based on this observation, we developed two techniques
to reduce the combinatorial error. Firstly, for each event
we can simply drop the two largest MT2’s. The corre-
sponding distribution is shown in Fig. 4 (b). Secondly,
we can use our measurement of the kinematic edge. For
each event there are three possible ways to assign the 4
b’s to two decay chains. For some events (about 30% in
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TABLE I: Mass measurements (all in GeV), assuming Gaus-
sian edge measurement uncertainties. We imposed the lower
bound mχ̃0

1
> 45 GeV, which generically follows from the

LEP invisible Z decay width measurement [17].

our sample) we find that for two of these combinations, at
least one same-chain invariant mass is larger than Mmax

bb ,
whereas for the other combination both same-chain in-
variant masses are smaller – this combination must be
the correct one. Using only those events and keeping
only the correct decay chain assignments, we obtain the
distribution of M210

T2 (0) shown in Fig. 4 (c). We per-
formed linear kink fits on the distributions in Fig. 4 (b)
and (c), and found that they are in agreement, indicat-
ing the robustness of our approach. Combining the two
fits yields M210

T2 (0)max
meas = (314.0 ± 4.6) GeV. We used a

similar method to extract the M220
T2 edge, and obtained

M220
T2 (0)max

meas = (492.1 ± 4.8) GeV. As for the kinematic
edge, the linear fit function works rather well, but it does
introduce some systematic error into the edge measure-
ments, which we again model by inflating the error bars
by a factor of 3. To summarize, the measured edges are:
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max
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surements given in Table I.
(II) Measuring the t̃1-mass — We simulate pp →

t̃1t̃∗1 → tt̄ + 2χ̃0
1 for 100 fb−1 integrated luminosity. The

signal production cross section is 2 pb. The dominant
irreducible background is (Z → νν)tt̄ with σBG = 135
fb. Following [16], we demand two fully reconstructed
hadronic tops in each event, in order to use the classical
MT2 variable [9]. Our signal cuts are (a) exactly 2 tagged
b-jets and at least 4 other jets with pT > 30 GeV and
|η| > 2.5 (b) lepton veto (c) ∆R > 0.4 between all the b-
and light jets (d) E/T > 100 GeV (e) HT > 500 GeV (e)
pmax

T > 100 GeV (f) require 4j to reconstruct to two W ’s
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dow of (140, 200) GeV. After cuts we are left with 1481
signal and 105 background events. Plotting the classical
MT2 distribution we see a clear edge, and using the linear
kink fit trial PDF with error scaling yields

MT2(0)max
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Compare this to the analytical prediction [18]
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[Note: we did not find large-       endpoints very useful, but did not try to optimize       ]
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FIG. 4: M210
T2 (0) distributions. The analytical prediction for the edge position is 320.9 GeV. We emphasize that even though

we show the linear kink fits only over a certain range, K depends very little on the fit domain.

measurement from (I), this yields the stop mass mt1, see
Table I. Taking into account all correlations, we find:

Υ′
meas =

1
v2

(
m2

t1 −m2
b1

)
= 0.525+0.20

−0.15 , (15)

in good agreement with the theoretical value Υ′ = 0.350.
As explained above, a measurement of Υ′ does
not by itself provide a consistency check
of SUSY, or help in discriminating it from
other models. However, if the SUSY-Yukawa sum
rule is assumed to be valid, this measurement
can be used to place a constraint on the 3rd
generation squark mixing. The measurement
in Eq. (15) corresponds to the range of Υ′

assumed in Fig. 3 (b). Thus, even without
using information from any other measurements,
one could conclude that, most likely, the stop
and sbottom mixing angles are rather small
and the observed light stop and sbottom states
are mostly left-handed (although right-handed
light states, with an accidental cancellation
of ∆Υb and ∆Υt, would remain as a logical
possibility at this point).

Discussion and Conclusions — In this paper we
proposed the SUSY Yukawa sum rule with direct
connection to the cancelation of quadratic Higgs mass
divergence, and introduce an observable Υ that can
be used to test it. This constitutes a significant check
on TeV-scale SUSY as the solution to the hierarchy
problem. While full measurement of Υ will have to be
left to a future lepton machine, we have demonstrated
that progress could already be made at the LHC.
In particular, we showed that, for the MSSM
benchmark point we chose, two masses entering
the sum rule, mt1 mb1, can be measured. Given
these measurements, one could then use the
sum rule (within the SUSY framework) to put
interesting constraints on other parameters,
such as third-generation squark mixing angles,
whose direct measurement would be difficult or
impossible.

In the course of the analysis we developed new
techniques for reducing combinatorial background

for MT2-measurements, allowing for complete
mass determination of t̃1, b̃1, g̃ and χ̃0

1. At this
point, we performed the analysis at the parton
level, with only a crude Gaussian smearing to
account for detector effects. It is important
to confirm the proposed techniques with
more detailed simulations including initial
and final state radiation, showering and
fragmentation, and better detector modeling.
Results of a study including some of these
effects will be presented in Ref. [11]. In
the future, it will also be interesting to
assess the abilities of the LHC to test the
sum rule (fully or partially) in the MSSM
parameter regions with spectra different from
our benchmark point, as well as to study in
detail how the sum rule tests can be completed
at a future lepton collider.
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find that the combinatoric background can be reduced
with simple cuts: very generally, the directions of jets
from the same decay chain should be correlated, and the
pairings with the largest invariant masses are likely to be
incorrect. Denoting the two b’s assigned to each decay
chain as (1,2) and (3,4) respectively, we drop the com-
bination with the largest Max[M12, M34] in each event,
and require Max[∆R12,∆R34] < 2.5. The resulting dis-
tribution shows a clear edge. We fit to it with a simple
trial-PDF, the linear kink function, which we will use
throughout this analysis:

x1 K x2

1

rK
r2

An unbinned maximum-likelihood fit reliably finds the
edge position K, yielding a measurement of the kine-
matic edge position Mbb

max
meas = (395 ± 5) GeV. This is

quite close to the correct value, Eq. (11), but the use of
the simple linear fit function clearly does introduce a sys-
tematic error into the edge measurement. To account for
this effect, we will simply assume a systematic error of
3 times the statistical error for each edge measurement;
this is sufficient to bring across the main points of our
analysis. More sophisticated methods for kinematic edge
extraction exist in the literature (e.g. [7]), and would be
used in practice.

The position of the kinematic edge provides one func-
tion of the three unknown masses; two more are required
to solve for the spectrum. These can be obtained from the
endpoints of distributions of events in MT2-subsystem
variables [10] M220

T2 (0) and M210
T2 (0), predicted to be at

M210
T2 (0)max =

[(m2
b1 −m2

χ̃0
1
)(m2

g̃ −m2
χ̃0

1
)]1/2

mg̃
= 320.9 GeV ,

M220
T2 (0)max = mg̃ −m2

χ̃0
1
/mg̃ = 506.7 GeV. (12)

Of the several possible MT2 variables for this system,
these two show the clearest edges, allowing precise mass
determination; the complete analysis of all MT2 variables
will be presented in [11].

To calculate M210
T2 for each event, we must divide the

four b’s into an upstream and a downstream pair, giving
6 possible combinations. Fig. 4 (a) shows the complete
M210

T2 (0) distribution; the edge is completely washed out.
It turns out that of the 5 possible wrong pairings, the two
where b’s from the same decay chain are put into up- and
down-stream pairs are the most problematic, since their
M210

T2 distributions extend significantly beyond the edge.
Based on this observation, we developed two techniques
to reduce the combinatorial error. Firstly, for each event
we can simply drop the two largest MT2’s. The corre-
sponding distribution is shown in Fig. 4 (b). Secondly,
we can use our measurement of the kinematic edge. For
each event there are three possible ways to assign the 4
b’s to two decay chains. For some events (about 30% in

mass theory median mean 68% c.l. 95% c.l. process

mb1 341 324 332 (316, 356) (308, 432) I

mg̃ 525 514 525 (508, 552) (500, 634) I

mχ̃0
1

98 – – (45, 115) (45, 179) I + LEP

mt1 371 354 375 (356, 414) (352, 516) I + II

TABLE I: Mass measurements (all in GeV), assuming Gaus-
sian edge measurement uncertainties. We imposed the lower
bound mχ̃0

1
> 45 GeV, which generically follows from the

LEP invisible Z decay width measurement [17].

our sample) we find that for two of these combinations, at
least one same-chain invariant mass is larger than Mmax

bb ,
whereas for the other combination both same-chain in-
variant masses are smaller – this combination must be
the correct one. Using only those events and keeping
only the correct decay chain assignments, we obtain the
distribution of M210

T2 (0) shown in Fig. 4 (c). We per-
formed linear kink fits on the distributions in Fig. 4 (b)
and (c), and found that they are in agreement, indicat-
ing the robustness of our approach. Combining the two
fits yields M210

T2 (0)max
meas = (314.0 ± 4.6) GeV. We used a

similar method to extract the M220
T2 edge, and obtained

M220
T2 (0)max

meas = (492.1 ± 4.8) GeV. As for the kinematic
edge, the linear fit function works rather well, but it does
introduce some systematic error into the edge measure-
ments, which we again model by inflating the error bars
by a factor of 3. To summarize, the measured edges are:

Mbb
max
meas = (395 ± 15) GeV ,

M210
T2 (0)max

meas = (314 ± 14) GeV ,

M220
T2 (0)max

meas = (492 ± 14) GeV . (13)

Each of these edges defines a subvolume of
(mg̃, mχ̃0

1
, mb1)-space, which yields the mass mea-

surements given in Table I.
(II) Measuring the t̃1-mass — We simulate pp →

t̃1t̃∗1 → tt̄ + 2χ̃0
1 for 100 fb−1 integrated luminosity. The

signal production cross section is 2 pb. The dominant
irreducible background is (Z → νν)tt̄ with σBG = 135
fb. Following [16], we demand two fully reconstructed
hadronic tops in each event, in order to use the classical
MT2 variable [9]. Our signal cuts are (a) exactly 2 tagged
b-jets and at least 4 other jets with pT > 30 GeV and
|η| > 2.5 (b) lepton veto (c) ∆R > 0.4 between all the b-
and light jets (d) E/T > 100 GeV (e) HT > 500 GeV (e)
pmax

T > 100 GeV (f) require 4j to reconstruct to two W ’s
with a mass window of (60, 100) GeV and the two W ’s to
reconstruct with the two b’s to two tops with a mass win-
dow of (140, 200) GeV. After cuts we are left with 1481
signal and 105 background events. Plotting the classical
MT2 distribution we see a clear edge, and using the linear
kink fit trial PDF with error scaling yields

MT2(0)max
meas = (340 ± 4) GeV. (14)

Compare this to the analytical prediction [18]
MT2(0)max = 336.7 GeV. Combined with the mχ̃0

1
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b-jets and at least 4 other jets with pT > 30 GeV and
|η| > 2.5 (b) lepton veto (c) ∆R > 0.4 between all the b-
and light jets (d) E/T > 100 GeV (e) HT > 500 GeV (e)
pmax

T > 100 GeV (f) require 4j to reconstruct to two W ’s
with a mass window of (60, 100) GeV and the two W ’s to
reconstruct with the two b’s to two tops with a mass win-
dow of (140, 200) GeV. After cuts we are left with 1481
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FIG. 4: M210
T2 (0) distributions. The analytical prediction for the edge position is 320.9 GeV. We emphasize that even though

we show the linear kink fits only over a certain range, K depends very little on the fit domain.

measurement from (I), this yields the stop mass mt1, see
Table I. Taking into account all correlations, we find:

Υ′
meas =

1
v2

(
m2

t1 −m2
b1

)
= 0.525+0.20

−0.15 , (15)

in good agreement with the theoretical value Υ′ = 0.350.
As explained above, a measurement of Υ′ does
not by itself provide a consistency check
of SUSY, or help in discriminating it from
other models. However, if the SUSY-Yukawa sum
rule is assumed to be valid, this measurement
can be used to place a constraint on the 3rd
generation squark mixing. The measurement
in Eq. (15) corresponds to the range of Υ′

assumed in Fig. 3 (b). Thus, even without
using information from any other measurements,
one could conclude that, most likely, the stop
and sbottom mixing angles are rather small
and the observed light stop and sbottom states
are mostly left-handed (although right-handed
light states, with an accidental cancellation
of ∆Υb and ∆Υt, would remain as a logical
possibility at this point).

Discussion and Conclusions — In this paper we
proposed the SUSY Yukawa sum rule with direct
connection to the cancelation of quadratic Higgs mass
divergence, and introduce an observable Υ that can
be used to test it. This constitutes a significant check
on TeV-scale SUSY as the solution to the hierarchy
problem. While full measurement of Υ will have to be
left to a future lepton machine, we have demonstrated
that progress could already be made at the LHC.
In particular, we showed that, for the MSSM
benchmark point we chose, two masses entering
the sum rule, mt1 mb1, can be measured. Given
these measurements, one could then use the
sum rule (within the SUSY framework) to put
interesting constraints on other parameters,
such as third-generation squark mixing angles,
whose direct measurement would be difficult or
impossible.

In the course of the analysis we developed new
techniques for reducing combinatorial background

for MT2-measurements, allowing for complete
mass determination of t̃1, b̃1, g̃ and χ̃0

1. At this
point, we performed the analysis at the parton
level, with only a crude Gaussian smearing to
account for detector effects. It is important
to confirm the proposed techniques with
more detailed simulations including initial
and final state radiation, showering and
fragmentation, and better detector modeling.
Results of a study including some of these
effects will be presented in Ref. [11]. In
the future, it will also be interesting to
assess the abilities of the LHC to test the
sum rule (fully or partially) in the MSSM
parameter regions with spectra different from
our benchmark point, as well as to study in
detail how the sum rule tests can be completed
at a future lepton collider.
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tribution shows a clear edge. We fit to it with a simple
trial-PDF, the linear kink function, which we will use
throughout this analysis:

x1 K x2

1

rK
r2

An unbinned maximum-likelihood fit reliably finds the
edge position K, yielding a measurement of the kine-
matic edge position Mbb

max
meas = (395 ± 5) GeV. This is

quite close to the correct value, Eq. (11), but the use of
the simple linear fit function clearly does introduce a sys-
tematic error into the edge measurement. To account for
this effect, we will simply assume a systematic error of
3 times the statistical error for each edge measurement;
this is sufficient to bring across the main points of our
analysis. More sophisticated methods for kinematic edge
extraction exist in the literature (e.g. [7]), and would be
used in practice.

The position of the kinematic edge provides one func-
tion of the three unknown masses; two more are required
to solve for the spectrum. These can be obtained from the
endpoints of distributions of events in MT2-subsystem
variables [10] M220

T2 (0) and M210
T2 (0), predicted to be at

M210
T2 (0)max =

[(m2
b1 −m2

χ̃0
1
)(m2

g̃ −m2
χ̃0

1
)]1/2

mg̃
= 320.9 GeV ,

M220
T2 (0)max = mg̃ −m2

χ̃0
1
/mg̃ = 506.7 GeV. (12)

Of the several possible MT2 variables for this system,
these two show the clearest edges, allowing precise mass
determination; the complete analysis of all MT2 variables
will be presented in [11].

To calculate M210
T2 for each event, we must divide the

four b’s into an upstream and a downstream pair, giving
6 possible combinations. Fig. 4 (a) shows the complete
M210

T2 (0) distribution; the edge is completely washed out.
It turns out that of the 5 possible wrong pairings, the two
where b’s from the same decay chain are put into up- and
down-stream pairs are the most problematic, since their
M210

T2 distributions extend significantly beyond the edge.
Based on this observation, we developed two techniques
to reduce the combinatorial error. Firstly, for each event
we can simply drop the two largest MT2’s. The corre-
sponding distribution is shown in Fig. 4 (b). Secondly,
we can use our measurement of the kinematic edge. For
each event there are three possible ways to assign the 4
b’s to two decay chains. For some events (about 30% in

mass theory median mean 68% c.l. 95% c.l. process

mb1 341 324 332 (316, 356) (308, 432) I

mg̃ 525 514 525 (508, 552) (500, 634) I

mχ̃0
1

98 – – (45, 115) (45, 179) I + LEP

mt1 371 354 375 (356, 414) (352, 516) I + II

TABLE I: Mass measurements (all in GeV), assuming Gaus-
sian edge measurement uncertainties. We imposed the lower
bound mχ̃0

1
> 45 GeV, which generically follows from the

LEP invisible Z decay width measurement [17].

our sample) we find that for two of these combinations, at
least one same-chain invariant mass is larger than Mmax

bb ,
whereas for the other combination both same-chain in-
variant masses are smaller – this combination must be
the correct one. Using only those events and keeping
only the correct decay chain assignments, we obtain the
distribution of M210

T2 (0) shown in Fig. 4 (c). We per-
formed linear kink fits on the distributions in Fig. 4 (b)
and (c), and found that they are in agreement, indicat-
ing the robustness of our approach. Combining the two
fits yields M210

T2 (0)max
meas = (314.0 ± 4.6) GeV. We used a

similar method to extract the M220
T2 edge, and obtained

M220
T2 (0)max

meas = (492.1 ± 4.8) GeV. As for the kinematic
edge, the linear fit function works rather well, but it does
introduce some systematic error into the edge measure-
ments, which we again model by inflating the error bars
by a factor of 3. To summarize, the measured edges are:

Mbb
max
meas = (395 ± 15) GeV ,

M210
T2 (0)max

meas = (314 ± 14) GeV ,

M220
T2 (0)max

meas = (492 ± 14) GeV . (13)

Each of these edges defines a subvolume of
(mg̃, mχ̃0

1
, mb1)-space, which yields the mass mea-

surements given in Table I.
(II) Measuring the t̃1-mass — We simulate pp →

t̃1t̃∗1 → tt̄ + 2χ̃0
1 for 100 fb−1 integrated luminosity. The

signal production cross section is 2 pb. The dominant
irreducible background is (Z → νν)tt̄ with σBG = 135
fb. Following [16], we demand two fully reconstructed
hadronic tops in each event, in order to use the classical
MT2 variable [9]. Our signal cuts are (a) exactly 2 tagged
b-jets and at least 4 other jets with pT > 30 GeV and
|η| > 2.5 (b) lepton veto (c) ∆R > 0.4 between all the b-
and light jets (d) E/T > 100 GeV (e) HT > 500 GeV (e)
pmax

T > 100 GeV (f) require 4j to reconstruct to two W ’s
with a mass window of (60, 100) GeV and the two W ’s to
reconstruct with the two b’s to two tops with a mass win-
dow of (140, 200) GeV. After cuts we are left with 1481
signal and 105 background events. Plotting the classical
MT2 distribution we see a clear edge, and using the linear
kink fit trial PDF with error scaling yields

MT2(0)max
meas = (340 ± 4) GeV. (14)

Compare this to the analytical prediction [18]
MT2(0)max = 336.7 GeV. Combined with the mχ̃0

1

5-10% errors on 
masses

6

(a) (b) (c)

FIG. 4: M210
T2 (0) distributions. The analytical prediction for the edge position is 320.9 GeV. We emphasize that even though

we show the linear kink fits only over a certain range, K depends very little on the fit domain.

measurement from (I), this yields the stop mass mt1, see
Table I. Taking into account all correlations, we find:

Υ′
meas =

1
v2

(
m2

t1 −m2
b1

)
= 0.525+0.20

−0.15 , (15)

in good agreement with the theoretical value Υ′ = 0.350.
As explained above, a measurement of Υ′ does
not by itself provide a consistency check
of SUSY, or help in discriminating it from
other models. However, if the SUSY-Yukawa sum
rule is assumed to be valid, this measurement
can be used to place a constraint on the 3rd
generation squark mixing. The measurement
in Eq. (15) corresponds to the range of Υ′

assumed in Fig. 3 (b). Thus, even without
using information from any other measurements,
one could conclude that, most likely, the stop
and sbottom mixing angles are rather small
and the observed light stop and sbottom states
are mostly left-handed (although right-handed
light states, with an accidental cancellation
of ∆Υb and ∆Υt, would remain as a logical
possibility at this point).

Discussion and Conclusions — In this paper we
proposed the SUSY Yukawa sum rule with direct
connection to the cancelation of quadratic Higgs mass
divergence, and introduce an observable Υ that can
be used to test it. This constitutes a significant check
on TeV-scale SUSY as the solution to the hierarchy
problem. While full measurement of Υ will have to be
left to a future lepton machine, we have demonstrated
that progress could already be made at the LHC.
In particular, we showed that, for the MSSM
benchmark point we chose, two masses entering
the sum rule, mt1 mb1, can be measured. Given
these measurements, one could then use the
sum rule (within the SUSY framework) to put
interesting constraints on other parameters,
such as third-generation squark mixing angles,
whose direct measurement would be difficult or
impossible.

In the course of the analysis we developed new
techniques for reducing combinatorial background

for MT2-measurements, allowing for complete
mass determination of t̃1, b̃1, g̃ and χ̃0

1. At this
point, we performed the analysis at the parton
level, with only a crude Gaussian smearing to
account for detector effects. It is important
to confirm the proposed techniques with
more detailed simulations including initial
and final state radiation, showering and
fragmentation, and better detector modeling.
Results of a study including some of these
effects will be presented in Ref. [11]. In
the future, it will also be interesting to
assess the abilities of the LHC to test the
sum rule (fully or partially) in the MSSM
parameter regions with spectra different from
our benchmark point, as well as to study in
detail how the sum rule tests can be completed
at a future lepton collider.
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•  • Top decays before hadronization    
polarization is observable!

• Top polarization is same as stop 
handedness if                   , or 
opposite if                    

• Top polarization determined by 
the “effective mixing angle”

LHC Stop Mixing Angle Measurement?
[MP, Weiler, 0811.1024;

Shelton, 0811.0569]

The effective mixing angles are given by

tan θ1j
eff =

ytNj4 cos θt − 2
√

2
3 g′Nj1 sin θt√

2
(

g
2Nj2 + g′

6 Nj1

)
cos θt + ytNj4 sin θt

,

tan θ2j
eff =

ytNj4 sin θt + 2
√

2
3 g′Nj1 cos θt√

2
(

g
2Nj2 + g′

6 Nj1

)
sin θt − ytNj4 cos θt

, (8)

where yt =
√

2mt/(v sin β). The main idea of this paper is that we may be able to get an
unambiguous and fairly precise experimental measurement of one or more of the angles θij

eff at
the LHC, by measuring the polarization of top quarks produced in the decay t̃→ χ̃0t. If the
neutralino mixing matrix is at least partly known from other measurements, this information
can be used to extract (or at least constrain) θt. This information can in turn be used,
together with the stop eigenmass measurements, to determine the stop-sector lagrangian
parameters.

At the LHC, stops can be directly pair-produced by strong interactions, in the processes

pp→ t̃it̃
∗
i . (9)

Direct production of same-sign stop pairs is negligible. In addition, there may be a sizeable
sample of stops produced indirectly, namely in decays of other superpartners, particularly
the gluino via g̃ → tt̃. (A brief discussion of the possibility of top polarization measurements
in the gluino sample appeared in Ref. [10].) Those events lead to more complicated final
state topologies in the detector, and vetoing such topologies can be used to separate the
“direct” and “indirect” stop samples. We will focus on the direct stop sample in this paper,
assuming that the contamination from the indirect sample, if present, is negligible. This
has the advantage of simpler events and more robust predictions, since the rate and event
topologies in the indirect sample depend on many more MSSM parameters. Some of the
analysis techniques described here could be applied to the indirect sample as well.

Once produced, stops will promptly decay. Possible two-body decay modes include t̃ →
tχ̃0, t̃→ bχ̃+, t̃→ W+b̃, and t̃→ H+b̃. We are interested in the t̃→ tχ̃0 mode, which must
be kinematically allowed and have a sizeable branching ratio for our analysis to apply. This
decay is followed by t→ W+b, and the W-boson then decays either hadronically (about 70%
of events) or leptonically (about 10% for each lepton flavor). Angular distributions of the
top decay products are sensitive to top polarization. For example, the angular distribution
of the b quarks in the top rest frame has the form

dσ

d cos θ̂b

∝
(

m2
t

m2
W

+ 2

)

(Eχ + sin 2θeffmχ) +

(
m2

t

m2
W

− 2

)

pχ cos 2θeff cos θ̂b , (10)

where θ̂b is the angle between the momenta of the b quark and the neutralino coming from the
same stop decay as the top, and Eχ and pχ are the energy and momentum of this neutralino.
(See Appendix A.) In the case of hadronic W decay, the top rest frame can be reconstructed.
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Figure 5: Angular distributions of events in the angle θb. The different contributions cor-
respond to (from top to bottom): signal (yellow), 4j + W− (black), 2j + 2b + W− (white),
tt̄(µ−) (gray), tt̄(τ− → µ−) (light red). The event numbers correspond to 10 fb−1 integrated
luminosity at the LHC.
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Figure 6: Angular distributions of events in the angle θl. The different contributions cor-
respond to (from top to bottom): signal (yellow), 4j + W− (black), 2j + 2b + W− (white),
tt̄(µ−) (gray), tt̄(τ− → µ−) (light red). The event numbers correspond to 10 fb−1 integrated
luminosity at the LHC.
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After cuts:
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Figure 3: Comparison of the analytic predictions and events generated by
MadGraph/MadEvent for the angular distribution of the b (left) and the charged lepton (right)
in the top rest frame. Here θ̂b (θ̂l) is the angle between the momenta of the b quark (charged
lepton) and the neutralino coming from the same stop decay as the top. The solid (red) his-
togram corresponds to the Monte Carlo events with cos 2θeff = −1 and the dashed (red) line
corresponds to the analytic prediction. The dashed and dash-dotted (black) lines correspond
to the MC distribution and analytic prediction, respectively, for cos 2θeff = +1.
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Figure 7: Leptonic, hadronic, and combined forward-backward asymmetries, as a function
of the angle θeff . The error bars indicate statistical errors for 10 fb−1 integrated luminosity.
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function of the angle θeff . The error bars indicate statistical errors for 10 fb−1 integrated
luminosity.
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[Parton-level analysis; ISR complicates things further - Plehn et al, 1006.2833] 



 • Direct measurement of      - gluino 
is a pure gaugino! 

• Complicated final state, 
combinatoric issues                   

• More detailed, quantitative analysis 
is required to assess the LHC 
potential for this measurement

Stop Mixing from Gluino Decays?

[Hisano, Kawagoe, Nojiri, hep-ph/0304214]
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FIG. 22: Distribution of mbb in the decay chain (III)1.
The (dashed) line is for t̃1 = t̃L(t̃R), and 400 GeV< mtb <
470 GeV. We use the mass spectrum in the sample point A1
in Table I, and the normalization is arbitrary.

FIG. 23: The solid line is for the total mtb distribution at the
sample point A1, the dashed line is for the mtb distribution
excluding the mode (III)1, and the dotted line is for the mtb

distribution excluding the modes (III)1, (III)11 and (III)21.

quarks go to the opposite direction to each other in the
gluino rest frame. Thus, the distribution of the invariant
mass mbb for events with mtb close to Mtb(III)1 is harder
(softer) for left-handed (right-handed) top quarks.

In Fig. 22 we show the mbb distribution from the de-
cay chain (III)1. In this simulation, we use the HERWIG
generator, since it respects helicities for each particles
in the processes. We generated a large number of events

which go through the decay (III)1. We use the mass spec-
trum at the reference point A1 in Table I. We use events
with 400 GeV< mtb < 470 GeV to make the distribution,
and the solid (dotted) line is for the left-handed (right-
handed) stop. The statistical significance in the differ-
ence between the left-handed and right-handed stops is
about 3σ for O(100) events.

In the above simulation, we neglect contribution of
other decay chains such as (III)11 and (IV)11. The other
decay chains may contribute to the mbb distribution even
if we impose that mtb is near the end point. The mbb

distributions in the modes (III)11 and (IV)11 do not de-
pend on the polarization for the top quark, since the top
quark distribution in the scalar boson decay is spherical.
In Fig. 23 we show the mtb distribution around the edge
region at the reference point A1. The solid line is for
the total distribution, the dashed line is for the distribu-
tion excluding the mode (III)1, and the dotted line is for
the distribution excluding the modes (III)1, (III)11, and
(III)21. About a half of the events near the end point
come from the signal mode (III)1, and the ratio between
the signal events and the rest depends on the MSSM pa-
rameters.

VII. CONCLUSIONS

In this paper we study cascade decays g̃ →
(tt̃1 or bb̃i) → tbχ̃±

i at the LHC by reconstructing tb final
state where the top quark decays hadronically. The mtb

distribution of the cascade decay has an edge structure.
The measurement of the end point and the edge height
of the mtb distribution constrains a combination of the
masses of g̃, b̃, t̃ and χ̃± and the decay branching ratios
of the particles involved in the decays.

Through a detailed simulation study, we show in this
paper the measurement of the end point and edge height
on a continuum background is indeed possible. Namely,
the end point of the cascade decay calculated in parton
level agrees with the reconstructed edge position, and the
ratio of Nedge (the number of reconstructed edge events)
and Nall (the number of total reconstructed tb events) is
understood well by the ratio Br(edge)/Br(g̃ → bbX).

The end point and branching ratios depend on the
mass and left-right mixing of the t̃ and b̃, as well as
the chargino and neutralino masses and mixings in the
MSSM. In the MSUGRA, these sparticle spectrum is ex-
pressed by a few parameters at the GUT scale. The de-
cay mode g̃ → (tt̃1 or bb̃i) → tbχ̃±

1 is open for a wide
region of the parameter space where m0 < mg̃. The mtb

distribution is sensitive to the A0 parameter, the trilin-
ear coupling at the GUT scale. The distribution is most
sensitive to A0 when A0 · M0 < 0.

The stop and sbottom could decay both into the heav-
ier and lighter charginos and neutralinos unlike the first
and second generation squarks. This is because the third
generation squarks have the large top (bottom)-Yukawa
coupling to the higgsinos. A strategy to search for such



Sbottom Mixing Measurement at the 
LHC



Mixing Angle Measurements at the ILC
[Bartl, Eberl, Kraml, Majerotto, Porod, Sopczak, hep-ph/9701336]
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6 Determination of Soft–Breaking Parameters —

A Case Study

In this section we want to estimate the experimental accuracies for the stop and
sbottom masses and mixing angles which can be expected from the Monte Carlo
simulation described in the preceding sections. Without beam polarization a possible
way to determine mt̃1 and cos θt̃ is using the

√
s and cos θt̃ dependence of the unpo-

larized e+e− → t̃1
¯̃t1 total cross section (see Figs. 1a and 6). Let us take as reference

point mt̃1 = 180 GeV, cos θt̃ = 0.57, and
√

s = 400 GeV and
√

s = 500 GeV as the

two reference energies. Note that at | cos θt̃ = 0.57| the e+e− → t̃1
¯̃t1 cross section

has its minimum. The cross sections at this point for these two energy values are
σ = 18.2 ± 4.1 fb at

√
s = 400 GeV and σ = 47.4 ± 5.5 fb at

√
s = 500 GeV where

the experimental errors follow from the Monte Carlo simulation. Figure 25 shows
the corresponding error bands in the mt̃1 − cos θt̃ plane. As can be seen, hardly an
information can be obtained on the mixing angle.

The polarization of the e− beam offers the possibility of measuring the sfermion
masses and especially the mixing angles with much higher accuracy. The cross sections
of e+e− → t̃1

¯̃t1 for 90% left– and right–polarized e− beam at the reference point mt̃1 =
180 GeV, |cos θt̃| = 0.57 for

√
s = 500 GeV are σL = 48.6±6.0 fb, σR = 46.1±4.9 fb,

where the experimental errors are given by ∆σ/σ = Nsignal /
√

Nsignal + Nbackground

with the number of signal and background events determined as described in the
previous section. Figure 26 shows the correponding error bands and the error ellipse
in the mt̃

1
− cos θt̃ plane. The experimental accuracies obtained in this way for the

mass of the lighter stop and the stop mixing angle are

mt̃1 = 180 ± 7 GeV, (27)

cos θt̃ = 0.57 ± 0.06. (28)

We treat the sbottom system in an analogous way. Assuming that tanβ is not
too large we can neglect left–right mixing in the sbottom sector. In the “Minimal
Supergravity–inspired Model” [36] one expects mb̃L

<∼mb̃R
, thus b̃1 = b̃L and b̃2 = b̃R,

i.e. cos θb̃ = 1. As reference point of the sbottom system we take mb̃1
= 200 GeV,

mb̃2
= 220 GeV. The cross sections for e+e− → b̃1

¯̃b1 with 90% left–polarized e− beams

and for e+e− → b̃2
¯̃b2 with 90% right–polarized e− beams then are σL(e+e− → b̃1

¯̃b1) =

61.1± 6.4 fb, σR(e+e− → b̃2
¯̃b2) = 6.0± 2.6 fb, where the errors are again determined

by our Monte Carlo procedure. The errors for the sbottom masses follow as:

mb̃1
= 200 ± 4 GeV, (29)

mb̃2
= 220 ± 10 GeV. (30)

With these values for mt̃1 , cos θt̃, mb̃1
, and mb̃2

we can use (16) and obtain the mass
of the heavier stop t̃2 if tan β is known from other experiments. Taking, for instance,
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• Proving SUSY-Yukawa Sum Rule experimentally 
would provide a striking confirmation of SUSY and 
its role in electroweak symmetry breaking

• Unfortunately, this will be quite challenging at the 
LHC: 

• Error inflation requires precise mass 
measurements

• Stop mixing angle measurement is hard, sbottom 
even harder

• ILC excels at this - a quantitative study would be 
very interesting!

Conclusions
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[MP, Spethmann, hep-ph/0702038]The Golden Region in the MSSM

θt = π/4, tanβ = 10

δm = m2 − m1

mh > 114 GeV

F.T. > 1/100

ρ

golden region

(Λ = 100 TeV)

Note: in the pMSSM (“without prejudice”), other squarks and gluinos can be >5 TeV 
without much fine-tuning


