

Update: CLIC CDR (physics and detectors)

presented by Konrad Elsener (CERN) on behalf of LCD@CERN

as you know:

There are many individual contributions by SiD colleagues to the CLIC detector study – we are very grateful for this.

Thank you very much !

The European strategy for particle physics was updated in 2006: <u>http://council-strategygroup.web.cern.ch/council-</u><u>strategygroup/Strategy_Statement.pdf</u>

An update of the strategy is foreseen in a series of meetings, starting in spring 2012, ending as late as possible in 2012.

for the Linear Collider, we plan to collaborate between ILC and CLIC in order to present a coherent Linear Collider strategy

Juan Fuster, new <u>Chair of the ECFA unified study on Linear Collider</u> <u>physics and detectors in Europe</u>, plans to bring the stakeholders together to initiate this joint ILC-CLIC approach .

CLIC approach to the upcoming European Strategy update:

- Present a staged approach to a future CLIC machine
- Ensure that the earlier stages are "realistic", in terms of power consumption and cost
- For the physics motivation part ensure close links with the LHC, and with the outcome of the current LHC physics run.

Note:

• So far, studies of the CLIC machine were mainly focused on "feasibility". More work needed to focus on cost effectiveness and power optimisation

• The choice for 3 TeV is linked to "showing feasibility", because the 3 TeV case is the "most difficult" case for machine and for detectors. Provided feasibility is demonstrated for 3 TeV, one can assume that machine + detector are feasible at any lower energy CLIC.

Consequences for the CLIC CDR

Besides a 3 TeV CLIC, and an early-stage 500 GeV version, the CDR will also address CLIC in a range of intermediate energies (typically 1-2 TeV).

This requires new machine optimisation studies (currently ongoing); addressing dependencies: energy ⇔ luminosity ⇔ power For the physics/detector volume (Vol. 2), the impact of this change is small.

Main impact is on the "CLIC physics potential" chapter of Vol.2. Small impact on other chapters, so current time-line and work-plan are maintained.

Cost considerations go in Volume 2, cost values will go in Volume 3

- WG1 will look at physics scenarios, and establish dependence on CLIC energy
 Was already foreseen in WG1 plan
- After summer, when initial CDR Vol.2 plan will be completed:
 Establish some dependencies of precision of measurements at CLIC on beam energy (background conditions)
 - •Repeat one or two suitable studies at an intermediate energy
 - •Add a chapter/section in intermediate energies to our CDR volume

Volume numbers of the CDR have changed:

- Volume 1:acceleratorVolume 2:physics and detectors
- Volume 3: summary volume => focused on using Vol.3 as input to the European Strategy Update

In first approximation: physics/detector CDR volume plans (contents + timeline) are unchanged

Target date remains end-August for our current physics/detector CDR work plan

Recent changes:

Small shifts in deadlines for chapters 3 + 11 Good progress currently with draft versions of chapters 4&5, 9, 13 and 16

CDR Vol 2. initial plan: layout/timeline 1

		section		Approx.	Submission
Chapter #	Title	#	Sub-title	page count	deadline
1	Introduction			3	25-Oct-10
2	CLIC physics potential			15	30-Apr-11
		2.1	Overview		30-Apr-11
		2.2	Higgs boson physics		30-Apr-11
		2.3	Supersymmetry		30-Apr-11
		2.4	Alternative theories at the weak scale		30-Apr-11
		2.5	Precision studies		30-Apr-11
	CLIC experimental				
	conditions and detector				
3	performance requirements			20	30-Apr-11
		3.1	Signatures for Multi-TeV physics		18-Mar-11
		3.2	Detector benchmark reactions		18-Mar-11
		3.3	The CLIC experimental environment		18-Mar-11
			Detector Requirements for e+e- physics		
		3.4	at 3 TeV		30-Apr-11
			Basic choice of detector concepts for		
		3.5	CLIC		18-Mar-11
			Detector requirements under CLIC		
		3.6	experimental conditions		30-Apr-11
4&5	CLIC detector concepts			14	31-Jan-11
		4.1	Rationale		31-Jan-11
			Design principles for the CLIC_ILD and		
		4.2	CLIC_SiD cetector concepts		31-Jan-11
			Sub-systems of the CLIC_ILD and		
		4.3	CLIC_SiD concepts		31-Jan-11

CDR Vol 2. initial plan: layout/timeline 2

6	CLIC vertex detectors			10	31-May-11
			Vertex detector constraints and		
		6.1	parameters		31-Mar-11
		6.2	Detector technology and performance		31-May-11
7	Tracking systems			15	30-Apr-11
		7.1	Introduction		28-Feb-11
		7.2	Tracker concepts		28-Feb-1
		7.3	CLIC_ILD tracker		28-Feb-1
		7.4	CLIC_SID tracker		28-Feb-1
		7.5	Tracker performance		30-Apr-1
8	Calorimetry			15	30-Apr-11
			A particle flow calorimeter for TeV		
		8.1	energies		28-Feb-11
		8.2	Electromagnetic calorimeter		28-Feb-1
		8.3	Hadronic calorimeter		28-Feb-1
			Calorimeter performance under CLIC		
		8.4	conditions		30-Apr-11
	Superconducting solenoids				
9	and magnet systems			8	31-May-1
		9.1	Introduction		30-Apr-1
		9.2	Magnetic field design		30-Apr-1
			Solenoid coil design		30-Apr-1
			Anti-solenoid design		31-May-1
		9.5	Conductor options		31-May-1
			Magnet services under push-pull		
		9.6	scenario		31-May-11
10	Muon systems at CLIC			4	30-Apr-11
		10.1	Introduction		28-Feb-11
			Layout and technologies of yoke		
		10.2	instrumentation systems		28-Feb-11
			Muon detection perfomances		30-Apr-11

CDR Vol 2. initial plan: layout/timeline 3

11	Very forward calorimeters			8	31-Mar-1
			Introduction		31-Mar-1
			Lumical		31-Mar-1
			Beamcal		31-Mar-1
		11.4	Very forward calorimetry integration		31-Mar-1
			Backscattering of particles from the		
		11.5	very forward region		31-Mar-11
	Readout electronics and				
12	data acquisition			5	31-May-10
	Interaction region and				
13	detector integration			15	30-Apr-1
			Introduction		30-Apr-1
			Detector layout		30-Apr-1
		13.3	Forwrad region and pre-alignment		30-Apr-1
		13.4	Push-pull ooperation		30-Apr-1
		13.5	Detector opening and maintenance		30-Apr-1
		13.6	Underground experimental area		30-Apr-1
14	Physics performance			20	30-Jun-1
		14.1	Simulation and reconstruction		31-Mar-1
		14.2	Performance for physics observables		31-May-1
			Performance for physics benchmark		
		14.3	processes		30-Jun-1
	Future plans and R&D				
15	prospects			3	15-May-1
16	Detector cost			3	30-Apr-1
17	Conclusion			1	31-May-1
ppendix A	Software packages			4	30-Apr-1
Deadline for	input to the R&D plan				31-Mar-1

Current CDR versions are on SVN repository: https://svnweb.cern.ch/trac/crdvol3

Access / upload CDR information, see S. Poss's presentation Oct 25th 2010: <u>http://indico.cern.ch/conferenceDisplay.py?confld=110092</u>

Nightly builds were created recently (thanks ! Marcel Stanitzki): http://stanitz.web.cern.ch/stanitz/nightlybuild.html N.B. I enjoyed spending time in Eugene !

I enjoyed spending time in Eugene !

- -> still much work ahead for CLIC CDR Vol. 2 (physics and detectors)
- -> some additional work will be required for the European Strategy Update
- -> the CERN PH-LCD group has submitted a list of possible contributions to the SiD_DBD, this list is now with the SiD management, for discussion within SiD and later feedback to LCD

Disclaimer:

In 2011, the LCD project has come under increasing budgetary pressure at CERN; we hope 2012 will not bring additional surprises

SPARES