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@ LHC layout and parameters

CMS
Q 8 arcs (sectors), ~3 km each TOTEM

IP5

Q 8 long straight sections (700 m each) extraction

Q beams cross in 4 points

0 2-in-1 magnet design with separate
vacuum chambers — p-p collisions

collimation
Nominal LHC parameters

Beam energy (TeV) 7.0

3

No. of particles per bunch 1.15x10" RS

No. of bunches per beam 2808
Stored beam energy (MJ) 362
Transverse emittance (um) 3.75
Bunch length (cm) 7.6

ALICE LHCb
injection B1 injection B2

- B =0.55 m (beam size =17 um)
- Crossing angle = 285 urad

-L=10%* cm2 s
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@ Stored energy

Increase with respect to existing accelerators :

* A factor 2 in magnetic field
LHC
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Collimation

0 To operate at nominal performance the LHC requires a large and
complex collimation system

o Previous colliders used collimators mostly for experimental background
conditions - the LHC can only run with collimators.

O Ensure ‘cohabitation’ of:
o 360 MJ of stored beam energy,

o super-conducting magnets with
quench limits of few mJ/cm3

Y \

@ @ O Almost 100 collimators and absorbers.

° a Alignment tolerances <0.1 mm to
| ensure that over 99.99% of the protons
are intercepted.

| ' 0 Primary and secondary collimators are
: m made of Carbon to survive large beam
loss.

beam
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Q The dump is the only LHC
element capable of absorbing
the nominal beam.

Beam swept over dump surface
(power load).

Q Ultra-high reliability and fail-
safe system.
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The event rate N for a physics process with cross-section o is proprotional to

the collider Luminosity L:

interaction region

N =0 /=
N, ———= - N

7 kN” f :kN2f7/
4720':0; drfBe

k = number of bunches = 2808

N = no. protons per bunch = 1.15%101

f =revolution frequency = 11.25 kHz

o*,,0*, = beam sizes at collision point (hor./vert.) = 16 um

To maximize L:

* Many bunches (k)
* Many protons per bunch (N)
* Small beam sizes O-*X,y= (B )12

S beam envelope (optics)

£ . beam emittance, the phase space
volume occupied by the beam (constant

along the ring)
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Bunch filling schemes

Q The LHC 400 MHz Radio-Frequency system provides 35’640 possible
bunch positions every 2.5 ns (0.75 m) along the LHC circumference.

o A priori any of those positions could be filled with a bunch...

a The smallest bunch-to-bunch distance is fixed to 25 ns: max. number of
bunches is 3564 (- some space for the dump kicker beam free region).

2.5ns
<>

(N N N I N N T O

»

<«

25ns B = filled position [J = bunch position

O Because of the injector flexibility, the LHC can operate with isolated
bunches or with trains of closely spaced bunches.

o Operation in 2010 began with isolated bunches (separation = 1 us), up to a
maximum of 50 bunches.

o From September 2010 the LHC was operated with trains of bunches separated
by 150 ns (45 m), up to 368 bunches.
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A

194 mm

ATLAS IP / ‘
ﬁ‘ -

a

A

~ 260 m \

N
v

Common vacuum chamber

Vertical plane: the beams are deflected to produce a crossing angle at the IP
to avoid undesired encounters in the region of the common vac. chamber.

o (prad) /
plane

ATLAS -100/ ver.
ALICE 110 / ver.

CMS 100 / hor
LHCb -100 /hor
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@ Aperture and collimation

During experiments data taking, the aperture limit of the LHC is in the
strong focusing quadrupoles (triplets) next to the experiments.

o Hierarchy of collimators is essential to avoid quenching super-conducting
magnets and for damage protection.

o So far we never quenched a magnet with beam !

& excellent machine and collimation system stability !!!
EXxp.
Triplet

Tertiar - Tertiary
Secondary 1z o Y ~ Dump Protection 15 18 ¢

o
Primary 880 10.50
6o

Collimation hierarchy

-
—
-
-

v
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Collimation

a Collimator alignment is made with beam and then monitored
from the loss distribution around ring.

0 Beam cleaning efficiencies = 99.98% ~ as designed

Betatron losses, B1 ver, 3.5TeV, squeezed (18.06.2010)

1 & T T T T T T T T T L T T T T T T T T T
Beam loss coll ‘;?c'}d —
. . imator
01 | monitor signal 5,000-10,000 warm
cleaning to SC
arc magnets Betatron _
the experiments.
TCT
0.001

local cleaning inefficiency

I

|

|

0 5000 10000 15000 20000 25000
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Luminosity (cm-2s-1)

Peak luminosity performance

Peak luminosity = 2x103? cm-?s™"
(368 bunches/beam, 348 colliding bunches)

LHC run 2010

i |
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Lyn Evans

14



@]

Integrated luminosity

Integrated proton luminosity 2010 ~48 pb-’

50

40

30

20

delivered integrated luminosity (pb'1)

10
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@ Stored energy

Stored energy ~24 MJ (TEVATRON ~2 MJ)

LHC run 2010

B |
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EN Operation with 150 ns

Q Operation with 150 ns was rather smooth - some warning signs cfor
even higher intensities — see next slides.

a Bunch intensities were pushed slightly above design, emittances were
40% smaller than design.

QO No problems with beam-beam effects, beam lifetimes typically 25 hours in
collisions, luminosity lifetimes ~12-15 hours (due to emittance growth).

|

Technical I
Stop




@]  Unidentified Flying Objects - UFOs

0 As the beam intensity was increased unexpected fast beam loss
events were observed in the super-conducting regions of the ring:

o Fastloss over ~0.5-2 ms, leading to a dump of the beam.
o Most events occurred during ‘rock’ stable periods.
o Losses in regions of very large aperture.

Q The hypothesis quickly emerged that it is not the beam that moves
to the aperture, but rather the opposite !

o ‘Dust’ particles Talling’ into the beam, estimated size ~100 um thick
Carbon-equivalent object.

a We do not understand the mechanism that triggers such events.

o Itis clearly induced by (presence of) beam — electromagnetic fields
at the surface of the vacuum chamber. Sparking ??7?

Lyn Evans 19
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@ Vacuum effects

Q Vacuum pressure increases were observed around the 4 experiments
from the moment LHC switched to 150 ns train operation — issue
became more critical as the intensity increased.

Effects can be suppressed by solenoids (CMS, ALICE stray fields...).

Q It was not possible to operate the LHC with bunch spacing of 50 ns for
experiments data taking because the vacuum pressure increases
were already too large at injection.

Pressures easily exceeded 4x10-" mbar (normal is 10° or less) leading to
closure of the vacuum valves.

Q Signs of cleaning by beam, with strong dependence on bunch intensity
and bunch spacing.

Consistent with the signature of electron clouds.
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@ Electron clouds

... affect high intensity beams with positive charge and closely spaced bunches.

QO Electrons are generated at the vacuum chamber surface by beam impact, photons...

Q If the probability to emit secondary e- is high (enough), more e- are produced and
accelerated by the field of a following bunch(es). Multiplication starts...

o Electron energies are in the 10- few 100 eV range.

O The cloud of e- can drive pressure rise, beam unstabilities and possibly overload the
cryogenic system by the heat deposited on the chamber walls !

- The cloud can ‘cure itself’: the impact of the electrons cleans the surface

cloud disappears — ‘beam scrubbing’

(Carbon migration), reduces the electron emission probability and eventually the

Bunch N+2 accelerates the e-,

Bunch N+1 accelerates the e-,
more multiplication...

multiplication at impact Bunch N liberates an e-
e oo RS -—> s
N+2 Nie1 .—mN
Ry, e
Lyn Evans
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@ Electron clouds at LHC

Q In principle no electron cloud was expected with 150 ns beams.

o Room temperature vacuum chambers are coated with a NEG that
kills/reduces the likelihood of electron clouds.

o But not the few pieces at the transition between cold and warm regions.

a With smaller bunch spacing of 50 ns, signatures of e-cloud everywhere:
o Steep vacuum pressure dependence on spacing of trains.
o Emittance growth along a train of bunches.
o Instability of bunches at the end of trains.

o Heat load on the vacuum chamber beam screen of some 10 mW/m with
200 bunches at injection =2 the cloud is present in the arcs !

Q It seems that the secondary emission yield is too high (~2.5 while ~1.5
was expected) and that we will have to cure the e-cloud before starting
operation with 50 ns.

Lyn Evans 23
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lons = protons at the LHC

The ion program of the LHC is based on Pb3?* for 2010/2011.
A 4 week ion run followed proton running.

At the LHC the difference between Pb ions and protons is very
small because of the high energy.

o Transition is rather ‘easy’.

o Main difference between ions and protons is the RF frequency (small
difference in speed) :

+RF frequency swing from injection to 3.5 TeV is 6 kHz for ions and
800 Hz for protons (wrt 400 MHz).

To first order, all one has to do is to change the frequency of the RF
system !

Pb collisions were established ~54 hours after the first injections.
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Predicted machine performance in 2011

Energy (GeV) 7000 3500
Bunches per beam 2800 900
Bunches intensity (10') 1.1 1.2
Normalised emittance (10-6m) 3.75 2.4
B"(m) 0.55 1.5

Peak Luminosity 1033 cm2 s

Assume 160 days operation with 40 % efficiency and average luminosity
7 x 1032 cm=2 s

Integrated luminosity in 2011 4 fb™!
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@ Conclusions

0 Luminosity target of 1032 cm-2s-' for 2010 has been reached.

A The 2011 run will start mid March.
o In 2011 peak luminosities up to 10% cm2s" can be expected.
o Peak luminosity and bunch configuration will depend on e-cloud effects.

o 3-4 fb-1 is within reach.
Q The Pb ion proceeded smoothly.

o Transition was fast.

o A similar run will take place end of 2011.

Q The LHC will runin 2012
o A reasonable target is 10 fb-1 by the end of 2012
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