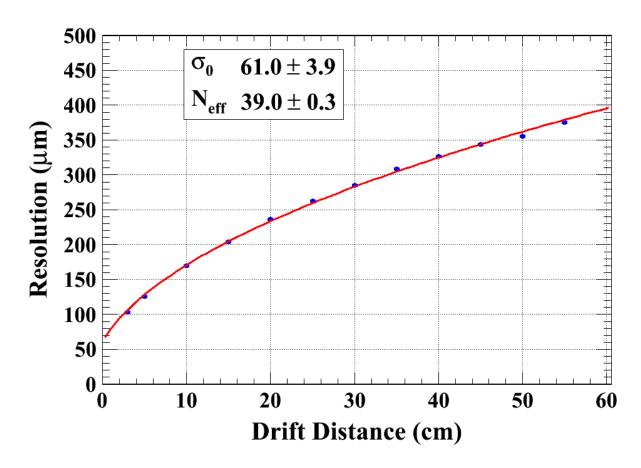

Preliminary Micromegas Data Analysis Results

D. Attié, P. Colas, M. Dixit, M. Riallot, Yun-Ha Shin, S. Turnbull, W. Wang

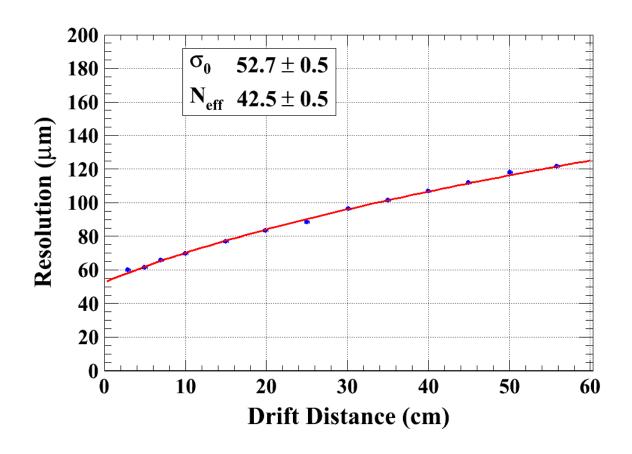
Detector modules


Preliminary Data Analysis Results (B=0)

$$\chi^2 / Ndf = 15.7 / 10$$

$$V_{\text{mesh}} = 381 \text{ V}$$

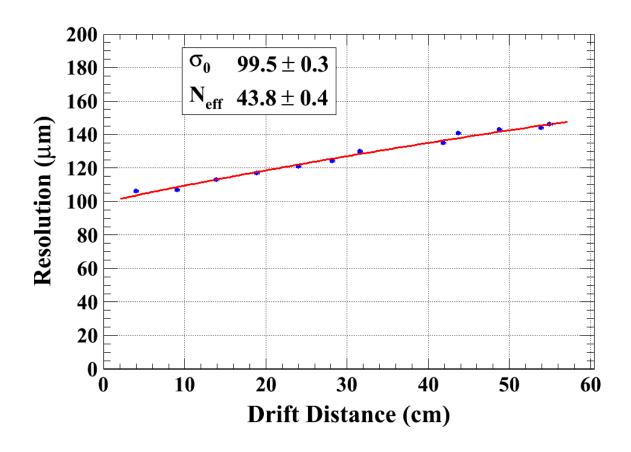
Preliminary Data Analysis Results (B=0)


Module_5

 χ^2 /Ndf = 13.6 / 9 (removing the point d=50cm)

Peaking time = 200 ns

$$V_{\text{mesh}} = 381 \text{ V}$$


Preliminary Data Analysis Results (B=1)

Module_CLK

Peaking time = 500 nsV_{mesh} = 380 V

Preliminary Data Analysis Results (B=1)

Module_INK

$$V_{\text{mesh}} = 380 \text{ V}$$

• Last year December and this year March, four modules were tested without or with magnetic field respectively. Among these modules, two modules which were tested without magnetic field last year, were made by same material (resistive Kapton of ~ 3 M Ω/\Box) with different routings. Two modules which were tested with B=1T this year, were made by resistive Kapton of ~ 5 M Ω/\Box and resistive ink of ~ 2 M Ω/\Box respectively. The preliminary analysis results of resolution are shown as follows:

	Magnetic field	Peaking time	Resolution	N _{eff}
Module_4 resistive Kapton of ~3 MΩ/□	B=0T (December	200ns	56 μm	38.3
Module_5 resistive Kapton of ~3 MΩ/□	2009)		61 μm	39
Module_CLK resistive Kapton of ~ 5 MΩ/□	B=1T (March 2010)	500ns	53 μm	42.5
Module_INK resistive ink of $\sim 2(?) M\Omega/\Box$			100 μm	43.8

Expected: Neff = 47.7 * <G>² / <G²>. Leads to (too?) high values of θ

Systematics?

- Maybe information from neighbouring rows increases artificially Neff, but this would introduce a correlation between neighbouring rows: not observed (skipping 2 lines every 3 does not change Neff measurement)
- Neff is stable with cuts
- At B=1 T, uncertainties from B (assumed to be 0.98 T) and C_D