

TPC Parameters for ILD Integration and the DBD Status 20 May 2010

Integration: hardware model iteration # 3

--Iteration # 1 at wpmtg103 on 20100422 was only looking at the effect of the electronics (cables and pipes), using Antoine's ROB as a basis (263mm x 282mm containing 16 x 16 S-Altros).

--Iteration # 2 wpmtg104 on 20100506:

--a) The 'TPC envelope' required by the MDI group must be included in the thinking.

--b) Email exchange with Dan; we concluded that it is better if the basic unit is smaller in size and number of channels.

--Interation #3; the 'final' proposal.

« MDI parameters» Point a), reminder → here is the 'TPC envelope' as set up by the MDI-integration group for the LOI

- TPC envelope
- R_o = 1808 mm
- R_i = 330 mm
- L/2 = 2350 mm
- TPC sensitive volume/area R_o = 1743 mm R_i = 395 mm L/2 = 2250 mm Volume = 40.7 cubic meters Area/endcap= 9054145mm^2
- Space for the inner FC = 65mmSpace for the outer FC = 65mmSpace for the endcap = 100mm ('Space' is provisional and to be filled by us, $e^{\frac{1}{2}/\sqrt{5}}$ Ron Settles MP

Ron Settles MPI-Munich LCTPC integration model

DETECTOR OPTIMISATION

Model N	ame	GLD	GLD'	GLD4LDC	LDC4GLD	LDC'	LDC	ILD
Sicola						100		- Andrew
B field (B field (T)		3.5	Y 4.0	9 3.0 €	3.5		3.5
Beampin	Bompine Read		14.0		15.5	14.0	13.0	14.5
Value	C.C.et.ly	ट स	1,Cari	LUI	le	adders		ladders
Deces	T		a. J					0.1.11.1
	R _{min}	17.5	16.0	15.0	16.5	15.0	14.0	16.0
Barrel	Lavers		4 cylind	ers	2.0	ymain		2 cylinders
SUP	SPP Radii		90, 160, 230, 300			161.4, 270.1		
TPC	R _{min}	437	435	371		371		395
drift	Rmax	1978	1740	1520	1931	1733	1511	1739
region	2max	2600	2350	2160	2498	2248	2186	2247.5
TPC pac	l rows	256	217	196	260	227	190	224
TCAL	R _{min}	2100	1850	1600	2020	1825	1610	1847
barrel	Layers		33		20(thi	10(1	-inj	20+9
	Total X_0		28.4			22.9		23.6
ECAL e	ndcap z _{min}	2800	2250	2100	2700	2300	2550	2450
HCAL	Layers	46	42	37		48		48
barrel	R _{max}	3617	3260	2857	3554	3359	3144	3330
λ_I (ECA	L+HCAL)	6.79	6.29	5.67		6.86		6.86

TABLE 2.1-1

Geometrical parameters of the baseline detector models used for the optimisation studies (GLD, GLDPrime, GLD4LDC, LDC4GLD, LDCPrime and LDC). Also shown are the corresponding parameters for the ILD baseline detector. Unless otherwise specified, values are shown in units of mm.

« MDI parameters»

Conclusion point a):

TPC sensitive area R_o = 1743 mm R_i = 395 mm

- Area/endcap to be instrumented with MPGDs = 9054145mm^2
- = 1998848 4mm×1mmpads/endcap

« MDI parameters»

Point b): Readjust the sizes from interation #1 based on the TPC envelope for Catherine Clerc. Reminder: we propose to define one "generic" TPC (not two) for MPGD (i.e., neither µgas- nor gemspecific).

{[TPC} interface parameters]

Ref	ILD-000-xxxx
Issue	
Date	20/01/2010
Page	2

1. Technological description

Each endplate ≈ 10 m²

Pads :

- ✓ µmégas 7*3mm² i.e. 0.55Mch/endplate
- ✓ Gems : 1*5mm² i.e. 2.3 Mch/endplate

2. Overall dimensions

400 KG/endplate, ≈ 2t full TPC 3. <u>Support</u> 3 tie rods from each endplate face to HCal barrel

4. Services

Cabling (µmégas)

- 80 modules each side.
- For each module (6800 channels) :
- 1 HV cable
- 1 double optical fibre
- 1 low-voltage 32A cable

Each side : 80 HV+80 Double Fibres+80 LV(32A) = 240 cables

Cooling :

160 W to remove (becomes negligeable is power pulsing can be fully implemented.) But to be checked With power pulsing 0.5mW per channel

Adrian's simulation: bottom line \Rightarrow want small pads

FIGURE 4.3-4. Occupancy for $xyz = 1 \times 5 \times 5$

"Generic" again means don't worry about sector/module shapes here. Suggestions will be made as to subdivide our readout units so that whatever shapes we decide on might be accomodated.

Also the shapes we decide on will depend on the outcome of Dan's studies

		%X0	microns	Mpa
241)			(yi	leid:
LP1	18.87	16.9	33	1.5
Lightened (all aluminum	8.93	8.0	68	3.2
Lightened	AI 7.35	7.2	< 168*	< 4.8*

Ron Settles MPI-Munich LCTPC integration model

20/05/2010

<u>Electronics: both micromegas and gem have agreed to</u> <u>use S-Altro</u>

Since the word 'module' has been used for different things, a 3rd notation is proposed here (sorry) to again increase the confusion:

Smodule	16 S-Altro	1024 pads
ROBn	N x Smodule	N x 1024 pads
ROB1	Smodule	1024 pads
ROB2	2 x Smodule	2048 pads
ROB4	4 x Smodule	4096 pads
ROB8	8 x Smodule	≈ LP 'module'
ROB16	16 x Smodule	Antoine's ROB

PADS SIZE

Smodule - smallest unit --pad pitch: 4.1×1.1 mm² --16 S-Altro/Smodule --1024 pads/Smodule \Rightarrow 4635.4 mm²/Smodule

readout plane size

PCB DISTRIBUTION

--ROB8 size: ¹/₂ 263 x 282mm² ≈ Dan's LP1 "ROB" size

20/05/2010

Sizes

--8 Smodule per ROB8 = 8192 pads/ROB8 ⇒ 37083.0 mm^2/ROB8

-- As just said, this is about the size of Dan's LP "module" and we decided at the last WP#104 meeting to use this size (since we are gainig experience with it now) as a basis for the present lctpc design.

PCB DISTRIBUTION

8 Smodule per ROB-8

20/05/2010

Exercise to design the endcap using ROB8... --8 Smodule per ROB8 = 8192 pads/ROB8 ⇒ 37083 mm^2/ROB8

--R_endcap ~ 395mm to 17143mm ⇒ 9054145 mm^2/endcap

 \Rightarrow 244 ROB8/endcap

PCB DISTRIBUTION

8 Smodule per ROB8

Channels

--64 pads/S-Altro --16 S-Altro/Smodule -- 8 Smodules/ROB8

 \Rightarrow

- --1024 pads/Smodule
- --8192 pads/ROB8
- --244 ROB8/endcap
- --1998848 pads/endcap

Digital Regulator

MODULE DETAILS

Optical link

Optical Fiber

Of course, different ROBn can be used across the endcap, depending on the shapes of the different ROBs, but our starting point should be ROB8...

This is a job for the experts...

LCTPC milestones

20	006-2012	Continue LCTPC R&D via small-prototypes
		and LP tests
20	012	DBD
20	013	Decide on all parameters
20	014	Final design of the LCTPC
20	018	Four years construction
20	019-20	Commission/Install TPC in the ILC Detector