Simulated annealing in the IOWA clustering

- Physics: pseudo-events with one charged hadron
 - scoring vs. cone algorithms
- Combinatorical complexity: multiple charged hadrons
- Comparison original clustering \ simulated annealing
- Further plan
- Conclusion

Simulated annealing

Physically motivated method to quickly approximate the global minimum of a function ("cost") of a discrete system.

Variant: Threshold Accepting (TA).

```
choose initial configuration; for (threshold T = T_0 \ge T_1 \ge T_2 \ge ... \ge T_n = 0) { choose new configuration which is small perturbation of the old configuration; if (cost(new configuration) < cost(old configuration) + T) old configuration = new configuration; }
```

(journal of computational physics 90, 161 1990)

Threshold accepting: implementation in the hadronic clustering

initial configuration:

assign all clusters to some track

new configuration:

randomly associate some cluster to some track, or un-associate

threshold T =

35 (100 times) ... 20 (100 times), 15 (200 times), 10 (300 times), 5 (400 times), 0 (100 times).

50 GeV single d, artificially 1 charged hadron

IOWA clustering

TA, cost function = |E-P|

• cost function = |E-P| + 0.005 for every breaking joining of a link above threshold 0.7

cheating on scoring

 cost function =|E-P| +\-0.005 for every breaking\joining of a link above threshold: "globe algorithm" • cost function = |E-P| +\- 0.005 (-\+0.014) for link with score 1.0 (0.0).

TA could be framework to make maximum use of good scoring without\prior to cone algorithms.

Complexity: Multiple charged hadrons

100 GeV qq.

• cost function = $\sum_{i} |E_{i}-P_{i}|/\sigma(E_{i}) + 0.005(-+0.014) \cdot \sqrt{P_{i}}/11 \text{ [GeV]}$

Comparison

Given clustering

- link threshold
- strict momentum ordering
- cone algorithms

Threshold accepting

- soft linking
- no momentum ordering (so far)
- no aggressiveness, no "stealing" (in principle): equilibrium

Plan

- Apply TA in 500 GeV qq for performance test
- Bottom-up:
 - quantitative studiesand improvements
 - more complex events

- PFA "Jets"
- handle punch-through
- improve dependence
 of cost function on link
 score, or score itself
- neutral reconstructionin TA

Conclusion

- An algorithm working in equilibrium can solve many problems:
 - track aggressiveness
 - cone aggressiveness
 - jet cause "track A steals critical part of track B"
 - imbalances (e.g. jet outlier)
 - negative mean reconstructed energy
- Link scores can be used further in this approach