Beam stability in damping ring - for stable extracted beam for ATF2

2010. 07.01 K. Kubo

Contents

- Single bunch stability
 - Jitter is evaluated from orbit data analysis
 - Probably OK
- Multibunch stability
 - Some instabilities, but no systematic data
 - Need studies
- Summary

Single bunch - measured longitudinal jitter

Energy: $\Delta E = \Delta x/\eta$ at any location in DR Use as many BPMs Energy deviation is expressed as

$$\Delta E = \sum_{\text{BPM}} \Delta x \, \eta_x / \sum_{\text{BPM}} \eta_x^2$$
, $(\Delta x = x - x_{\text{mean}} \text{ for each BPM})$

assuming all BPM have the same resolution.

The shape (Non-Gaussian) of distribution suggests synchrotron oscillation. RMS is about 1.4E-4.

(Natural energy spread ~ 5E-4)

Single bunch - measured transverse jitter

Fit a and b for each pulse, using measured position at i-th BPM as

$$x_i = a\beta_{xi}\cos\phi_{xi} + b\beta_{xi}\sin\phi_{xi}$$
 x_i : measured position (subtracte d by $\Delta E\eta_{xi}$), β_{xi} : betafuncti on, ϕ_{xi} : betafunct phase

East arc and west arc, separately

	east+west	east-west	correlated	uncorrelated
x cos-like (a)	6.114e-6,	3.130e-6	2.62e-6	1.57e-6
x sin-like (b)	5.976e-6	3.739e-6	2.33e-6	1.87e-6
y cos-like (a)	6.244e-6	5.942e-6	0.96e-6	2.97e-6
y sin-like (b)	3.305e-6	3.982e-6	Imaginary	1.99e-6

Correlated: Real betatron oscillation

Uncorrelated: Noise (limit of measurement)

 \rightarrow Horizontal oscillation: 0.1 σ_x (if emittance = 1 nm)

 \rightarrow Vertical oscillation: < 0.5 σ_y (if emittance = 4 pm)

Unstable multibunch beam

- In 3 train operation (1 bunch/train)
 - Vertical oscillation (horizontal too?)
 - Vertical beam size blowup by X-ray profile monitor (20 ms gate)
 - Bunch to bunch (uncorrelated) jitter observed in FONT study
 - Sometimes stable. (May depend on chromaticity ???)
 - Insensitive to slight change of tunes (?)
 - From wakefiled?
 - Long range, survived in train spacing in three train operation, but damped for single or two train operation.
 - RF cavity (No, if we believe old simulations and old RF measurement) ?
 - or some other resonators?

Unstable multibunch beam

- Multibunch/train operation
 - Longitudinal oscillation in tail bunches (?)
 - Amplitude depend on intensity
 - Observed by streak camera
 - Vertical motion was stable at low intensity in past studies.
 - Beam size measured by DR Laser Wire
 - For high intensity, unstable, which we suspected to be fast ion instability
- According to simulations, Cavity wakefield should not cause coupled bunch instabilities.
- It is difficult to explain. Need more experimental information

Longitudinal oscillation in tail bunches

Streak camera,

Multi bunch single train

Horizontal axis: long range time

Vertical: short range time

Each line is from one bunch.

(Should be flat for stable bunch)

Tail bunches oscillate larger than head bunches.

[by Naito]

Transient transverse oscillation growth

Can be explained by cavity wakefield

Effectively increase damping time, but should be damped at last.

Multi-bunch oscillation monitor by Naito

What can we do for multibunch - 1

Survey conditions for stable and unstable beam

- Bunch fill pattern: number of bunches, number of trains
- Bunch intensity
- Tune and chromaticity
- Orbit
- RF voltage
- RF frequency
- Parameters of RF feedback

Some of past observations look inconsistent each others. More systematic study will be necessary, which takes time.

What can we do for multibunch - 2

Measure oscillations in detail

- Frequencies of oscillation, by spectrum analyzer
 - It looks easy, if the oscillation is from a narrow resonance (?)
- Turn-by-turn BPM
 - We do not have bunch-by-bunch TBT BPM, but it is possible to measure TBT of one selected bunch (Naito)
- Anything else?

Some more simulations, if necessary.

Other things to be done for stable beam in EXT

- Check effectiveness of feed-forward using FON like system
 - Measure correlation between DR (last turn) and EXT orbits
- ?????

Multibunch injection

- High current injection tuning
 - Recently, N~0.1E10/bunch (?)
 - Improving injection efficiency is important.
 - Also, establishing tuning procedure (document)

Why multibunch injection is difficult?

- Possible bunch to bunch energy difference (If compensation is not perfect. Linac RF should be stable.)
- Effects of transient beam loading of RF cavities
 - During injection, transient beam loading causes synchrotron oscillation and reduce energy acceptance.
- Effects of transient transverse wakefield of RF cavities
 - Reduce transverse orbit error acceptance

Proposal of "multibunch operation week"

- In October 2010, one week dedicated to multibunch studies
 - Perform experimental studies listed in previous slides
 - Probably, about 16 hours/day, 4 days (depends on manpower)
- Need more detailed plans.
 - Should have meeting of a small group?

Summary

- Single bunch beam is stable
 - Jitter is smaller than beam size (< 0.5 sigma)
- Multibunch instabilities have been observed
 - 3 train (single bunch/train) and multibunch (single train)
 - Need systematic studies
 - Survey parameters
 - Measure oscillation in detail
 - Dedicated 1 week of multibunch operation is proposed