Preliminary hadron analysis for the CALICE AHCAL

Marina V. Chadeeva

I. Event selection impact on the energy resolution and linearity

II. New method of software compensation for HCAL

Marina Chadeeva, ITEP

Data and software

DATA: CERN 2007 test beam runs with complete CALICE setup π^- 10, 12, 15, 18, 35, 80 GeV π^+ 30, 40, 50, 60, 80 GeV the newest official reconstruction software as of April 2010

MC: QGSP BERT and LHEP physics lists π^{-} 10 GeV π^{+} 30, 50, 80 GeV (thanks to Lars Weuste)

official Mokka and digitization software as of April 2010

Event selection stages

Event selection: energy distributions for 10-GeV π^-

ECAL: $(\frac{GeV}{MIP})_{vis}^{ecal}$ = 0.000147; S_{ecal} = 25.57; ECAL1:ECAL2:ECAL3 = 1:2:3 (from CAN-008)HCAL: $(\frac{GeV}{MIP})_{vis}^{hcal}$ = 0.000816; S_{hcal} = 31.22

Event selection: energy distributions for 80-GeV π^+

The same sampling factors and coefficients as in the previous slide.

Event selection: energy distributions for 10-GeV π^-

 S_{ecal} = 29.2. For data, the selection of events with shower start in HCAL improves energy resolution and shifts the mean value up by \sim 5%. The shift predicted by QGSP_BERT model is of the same order of magnitude.

Event selection: energy distributions for 80-GeV π^+

 S_{ecal} = 29.2. The mean value shift predicted by QGSP_BERT is \sim 5% as for 10 GeV while for 80-GeV data no such a shift is observed. The more significant RMS improvement can be seen for data than for QGSP_BERT.

Event selection: linearity

Event selection: energy resolution for data

The increase of difference between start anywhere in HCAL and start in first 5 HCAL layers with increasing beam energy is due to higher probability of leakage for higher energies.

Event selection: energy resolution for MC

LHEP

QGSP_BERT

Event selection: summary

calibration inconsistency (ECAL size?) \Rightarrow resolution $\downarrow \downarrow$ by \sim 8% @ low energies

shower leakage into TCMT $\uparrow \uparrow \Rightarrow$ resolution $\downarrow \downarrow$ by \sim 8% @ high energies

How to avoid? Select events with shower start in the first 5 HCAL layers

$$\begin{split} & \Downarrow \\ \frac{\sigma_E}{E} = \frac{(53.0 \pm 0.2)\%}{\sqrt{E/GeV}} \oplus (2.8 \pm 0.1)\% \oplus \frac{0.00 \pm 0.05}{E/GeV} \\ & \text{linearity} \sim 2\% \text{ for } \pi \text{, while} \sim 8\% \text{ for protons} \end{split}$$

For the CALICE AHCAL $e/\pi \approx 1.09$ for $10 \div 80$ GeV

Software compensation: approach

based on hit spectrum analysis \Rightarrow only events with shower start in first 5 HCAL layers will be analyzed

Energy distribution for 30-GeV π^+

Hit spectra for energy distribution tails

The technique proposed in CAN-015 and also based on hit spectrum analysis includes individual hit weighting in 8 regions of hit spectrum and 6 parameters to correct energy dependence.

Software compensation: integral spectrum characteristics

The following integral values can characterize a hit spectrum $h_i(e)$ of the i-th event:

 $C_i^{lim} = \int_0^{e_{limit}} h_i(e)de \quad \text{and} \quad C_i^{av} = \int_0^{e_i^{av}} h_i(e)de$ where $e_{limit} = 5.5 \text{ MIPs}$ and $e_i^{av} = \int_0^{e_{max}} eh_i(e)de$ The ratio $\frac{C_i^{lim}}{C_i^{av}}$ is inversely correlated with the energy deposited in the event.

This dependence can be fitted by linear or parabolic function.

Software compensation: correction procedure for i-th event

Only 3 (or 4) parameters and no adjustment of ranges in hit spectra

Marina Chadeeva, ITEP

CALICE Analysis meeting, May 2010

Software compensation: linearity after correction

Linear

Parabolic

Software compensation: resolution after correction

Parabolic

Linear

Software compensation: energy distributions after correction

Software compensation: fit with fixed σ_{noise}

$$\frac{\sigma_E}{E} = \frac{(44.0 \pm 0.2)\%}{\sqrt{E/GeV}} \oplus (2.3 \pm 0.1)\% \oplus \frac{0.3}{E/GeV}$$

Software compensation: MC resolution after correction

LHEP

QGSP_BERT

Software compensation: MC linearity after correction

Software compensation: summary

Proposed method of software compensation enables to improve resolution by $\sim 10\%$

AdvantagesProblems3 (or 4) parameters onlyfull hit spectrum necessaryweak energy dependenceenergy range extensionsimilar behavior of MC resolutiondistortion of MC linearity

TO DO:

Hadron selection procedure for lower energies More energy points and simulated MC physics lists Energy range expansion

Marina Chadeeva, ITEP

Backup slides

