ILC Cavity Gradient R&D Plan Proposal for Release 5

Rongli Geng for ILC Cavity Group 2jun2010 ILC SCRF WebEx Meeting

TDP-1 Cavity Gradient Goal Achieved

- 50% yield at 35MV/m with Q0>=8E9 for vertical acceptance test with up to 2nd-pass processing.
 - "global" data
 - 32/27 cavities built by 3 vendors (Zanon, ACCEL, AES)
 - Processed and tested in 2 labs (DESY, JLab)
- FY09-FY10 subset data demonstrated 75% yield at 35 MV/m with Q0>=8E9 up to 2nd-pass processing.
 - 12 cavities built by 2 vendors (ACCEL, AES)
 - Processed and tested in 1 lab (JLab)

"Global" Data first-pass and second-pass yield

Electropolished 9-cell cavities

Electropolished 9-cell cavities

FY09-FY10 Subset Data

6/2/2010

Globally Coordinated S0 Effort a Success

- Gradient limit by field emission much reduced.
 - Post-EP rinsing
 - Optimal EP
 - Streamlined assembly procedure
- Key sources of FE on EP'ed surface understood.
 - Sulfur
 - Nb_xO_y granulus
- Optimal EP.
 - Simplicity demonstrated
 - Repeatability demonstrated
 - Transferability across facilities demonstration in progress

Gradient Scatter Remains

- Yield drop at 15-20 MV/m a major issue.
 - 30% rejection up to 2nd—pass processing, even if all cavities passing 25 MV/m will be used.
 - It means 43% overproduction needed.
 - This is unlikely acceptable for mass production.
- Source of problem is local defect near (within a few cm from seam) equator EBW.
 - One small defective area (<1mm dia.) limits entire cavity.
 - Superior surface area outside defect reaches very high surface field already.

Gradient Reached by Individual Cells

45 40	12 9-cell cavities (6 by ACCEL, 6 by AES) processed and tested at JLab since July 2008	4mav10
35	6 out of 12 exceed 35 MV/m @ Q0 >= 8E9 after 1st pass proc. 9 out of 12 exceed 35 MV/m @ Q0 >= 8E9 up to 2nd pass proc.	RG
30		
25		
20		
15	Each of the 3 failed cavities is limited by	
10	one defect in one cell	
5		
0		42 43 44 45

Eacc [MV/m] ILC SCRF WebEx Meeting

Number of Cells

Twin defects 300-500µm dia. 8mm from equator EBW seam

Max. Gradient Reached in Each Cell (Pi-mode Equivalent) AES6 1st-Pass Processing and Testing, 30apr09

ILC SCRF WebEx Meeting

Local Defects Responsible for Quench Limit at 15-20 MV/m

- Strong evidence to show these defects have origin from fabrication and/or material.
 - Re-EP ineffective in curing defective cell for raised quench limit.
 - Local treatment (grinding) found effective in raising quench field from ~ 20 MV/m to > 30 MV/m without losing performance of healthy cells.
- Abating these defects with cavity mass production in context requires improvements/changes in fabrication and material.

Strategy for TDP-2

centered on BCD and oriented for impact in TDR

- Fabrication QA/QC
 - Improve tools for QC
 - DESY: Cavities for XFEL and ILC-HiGrade, mass production aspect
- Fabrication improvement/optimization
 - Forming/Machining
 - FNAL/PAVAC: smart cups
 - KEK: Forming optimization with pilot plant
 - EBW
 - KEK: EBW optimization with pilot plant
 - FNAL/JLAB/Cornell/Industry: build and test "destructible" bare 9-cell cavities
 - JLAB: EBW optimization by build bare 9-cell cavities with in-house welder
- Mechanical polishing prior to heavy EP
 - Eliminates weld irregularities
 - Reduce (or may even eliminate the need of ?) surface removal by heavy EP
 - FNAL: raw 9-cell mechanical polishing before main chemistry
 - Cornell: 9-cell tumbling for cavity recover
- Large-grain material (directly sliced from ingot)
 - Eliminates rolling in standard sheet material
 - KEK: large-grain cavities and multi-wire slicing
 - DESY: processing and evaluation of 8 existing 9-cell large grain cavities
 - JLab: in-house fabrication and test 2 9-cell large grain cavities
- Seamless cavity
 - Eliminates weld prep machining and EBW
 - DESY in collaboration with JLab: hydrofrom and test multi-cell cavities
 - FNAL/industry: hydroform and test multi-cell cavities
- Material improvement/optimization
 - For example Nb with low Ta concentration
 - FNAL: material characterization and 1-cell cavity testing
 - JLab: material characterization and 1-cell testing
- Post heavy EP heat treatment optimization
 - Engineering thermal and metallurgical properties
 - JLab: 1-cell, 9-cell experimenting with associated material characterization
- Post vertical test local treatment
 - Rapid quench limit improvement with small incremental cost
 - KEK: local grinding
 - FNAL: local re-meting with laser beam
 - JLab: local treatment/re-melting with electron beam

Strategy beyond TDP-2

- ACD shape cavity
 - Extends 1-cell cavity success to 9-cell cavity
- Nb-Cu clad material cavity
 - Yield improvement potential due to increased thermal stabilization
 - Cost reduction
- Thin film cavity
 - Significant cost reduction potential
 - Very high gradient breakthrough potential by using unconventional material