

DR 10 Hz Repetition Rate

S. Guiducci (LNF)

AD&I webex, 23 June 2010

1

~8 damping times are needed for the vertical emittance

ΪĻ

 $5 \text{ Hz} \Rightarrow \tau_x \leq 26 \text{ ms}$

10 Hz $\Rightarrow \tau_x \le 13$ ms

~5 damping times are needed for the vertical emittance

5 Hz $\Rightarrow \tau_x \leq$ 36 ms

10 Hz $\Rightarrow \tau_x \leq 18$ ms

The evaluation is done only for the positron ring which is more demanding

SB2009 - 3.2 km ring

DR Parameters for positron ring 10 Hz operation

	SB2009	10 Hze ⁺
Circumfer ence (m)	3238	3238
Number of bunches	1305	1305
Damping time τ_x (ms)	24	13
Emittance $\mathbf{\epsilon}_{x}(\mathbf{nm})$	0.53	0.57
Emittance $\boldsymbol{\varepsilon}_{y}(pm)$	2	2
Energy loss/turn (MeV)	4.4	8.4
Energy spread	1.2×10^{-3}	1.5×10 ⁻³
Bunch length (mm)	6	6
RF Voltage (MV)	7.5	13.4
Av erage curre nt (A)	0.43	0.43
Beam Power (MW)	1.9	3.6
N. of RF cavities	8	16
Bwiggler (T)	1.6	2.4
Wiggler per iod (m)	0.4	0.28
Wiggler length (m)	2.45	1.72
Total wiggler length (m)	78	75
Number of wigglers	32	44

8 damping times needed to reduce vertical e⁺ emittance

 $5 \text{ Hz} \Rightarrow \tau_x \leq 26 \text{ ms}$

10 Hz $\Rightarrow \tau_x \le 13$ ms

Increase wiggler field Reduce wiggler period Double the number of RF cavities

4

Cost related modifications

RF voltage Beam power N. of RF cavities

Wiggler field Wiggler period Wiggler length N. of wigglers Total wig. sect. length SR power per wiggler $7.5 \Rightarrow 13.4 \text{ MV}$ $1.9 \Rightarrow 3.6 \text{ MW}$ $8 \Rightarrow 16$

 $1.6 \Rightarrow 2.4 \text{ T}$ $0.4 \Rightarrow 0.28 \text{ m}$ $2.45 \Rightarrow 1.72 \text{ m}$ $32 \Rightarrow 44$ $136 \Rightarrow 176 \text{ m}$ $40 \Rightarrow 63 \text{ kW}$ Istituto Nazionale di Fisica Nucleare

Laboratori Nazionali di Frascati

Comments on wiggler modifications

- Some engineering design work is needed
- Lattice and dynamic aperture tuning
- SR copper absorbers* (not included in RDR costs) 0.5 m long, 40 kW; with modified wigglers there is space to increase the length to 0.75 m to absorb 60 kW
- The SR power passing through all modules and continuing downstream to the fist arc dipole is 256 kW. This is expected to by ~ 1.5. A solution is to leave some space for more absorbers
- Cryogenic load to be reevaluated

* O. B. Malyshev, et al. "Mechanical and Vacuum Design of the Wiggler Section of the ILC Damping Rings", ID: 2596 - WEPE092, IPAC10

DCO4* - 6.4 km ring

DR Parameters for positron ring 10 Hz operation

	DCO4	10 Hz e ⁺
	(90deg)	
Circumfer ence (m)	6476	6476
Number of bunches	261 0	2610
Damping time τ_x (ms)	21	13
Emittance $\boldsymbol{\varepsilon}_{x}(nm)$	0.44	0.56
Emittance $\boldsymbol{\varepsilon}_{y}(pm)$	2	2
Energy loss/turn (MeV)	10.2	16.6
Energy spread	1.3×10^{-3}	1.6×10^{-3}
Bunch length (mm)	6	6
RF Voltage (MV)	21	32
Av erage curre nt (A)	0.43	0.43
Beam Power (MW)	4.4	7.1
N. of RF cavities	18	30
Bwiggler (T)	1.6	2.4
Wiggler period (m)	0.4	0.28
Wiggler length (m)	2.45	1.72
Total wigg ler length (m)	216	162
Number of wigglers	88	94

8 damping times needed to reduce e⁺ vertical emittance

INFN

Laboratori Nazionali di Frascati

 $5 \text{ Hz} \implies \tau_x \le 21 \text{ ms}$

10 Hz $\Rightarrow \tau_x \le 13$ ms

Increase wiggler field

Reduce wiggler period

Increase the number of RF cavities $18 \Rightarrow 30$

DCO4 has 3 options with different momentum compaction, I used the intermediate one with $\alpha_c = 1.6e-4$

* DCO4 is new baseline after Sendai TILC08 meeting

Preliminary Costs

	SB2009 @ 10 Hz	DCO4 @ 10 Hz
N. of bunches	1305	2610
Added RF cavities	8	12
Cost (k\$)	12000	18400
Added wigglers	12	6
Cost (k\$)	3600 - 5000	1800 - 2500

- Costs based on RDR 2007 numbers
- 50% duty cycle not considered
- •The lower cost for the wigglers is scaled with the wiggler length
- SR absorbers are not included
- Extra quadrupoles are not included

Preliminary Costs

	SB2009 @ 10 Hz	DCO4 @ 10 Hz
N. of bunches	1305	2610
Added RF cavities	8	12
Cost (k\$)	12000	18400
Added wigglers	12	6
Cost (k\$)	3600 - 5000	1800 - 2500

IL

	SB2009 @ 10 Hz		
	single ring	2 rings	
N. of bunches	2610	2610	
Added RF cavities	16	2x8	
Cost (k\$)	24000	24000	
Added wigglers	12	2x12	
Cost (k\$)	3600 - 5000	7200 - 10000	

Comparison with SB2009 2610 bunches options

1 or 2 positron rings in the same tunnel

Alternate 10Hz Cycle DR RF Operation

- In consultation with Sergey Belomestnykh (Cornell)
- Normal Operations:
 - Reactive beam loading is large
 - Cancelled by appropriate cavity de-tuning
 - Beam-loaded cavity then represents a matched load for the klystron
- Issues
 - With no beam, the cavity is detuned far from resonance
 - For DR parameters, ~365kW would be required to maintain the voltage in each cavity
 - This exceeds available power from klystron in our present specification
- Potential Solutions
 - Fast Frequency Tuner with either feedforward or feedback system

 → Tune cavity as beam is injected/extracted
 - Tristan utilizes a piezo tuner on their SCRF cavities
 - CESR cryomodules also equipped with piezos for microphonics (not enough range for large detuning)
 - Requires an R&D effort to implement for this application, but millisecond timescale seems quite reasonable.
 - Fast Waveguide Tuner
 - Under development at several laboratories, but not presently used in operations
 - Probably not sufficient by itself as ower requirements will still be high
 - May be useful in conjunction with a Fast Frequency Tuner (particularly if frequency tuner has limited range)
 - Other?
- Conclusion: Significant R&D will be required for the alternating 10Hz scenario OR a significant cost increase to deal with the additional power overhead

June 23, 2010

ILC ADI Meeting

Mark Palmer

10

Wiggler Photon Stop Issues

- In consultation with Yulin Li & Xianghong Liu
- 10 Hz Operation

June 23, 2010

- Higher power load in each wiggler requires adjustments to design
- Expect that a technical solution is possible
- Alternating 10Hz Cycle Operation
 - Average power load is lower than previous case
 ⇒ no issues for cooling system

Rapid cycling will lead to added thermal stress at the photon absorbing surfaces

- Some concern about ability of standard tools to model this (optimized for steady state calculations)
- General recommendation is to provide additional operating margin relative to the steady state yield point
- Assuming that baseline design is for full duty cycle 10Hz operation, the factor of 2 reduction in average power load likely satisfies the previous recommendation.

Mark Palmer

11

ILC ADI Meeting

• Conclusion: No serious issues are likely