

Further improvement of the TC performances

Marie GELIN on behalf of IPHC - Strasbourg and IRFU – Saclay

saclay

- Investigation of a new substrate (High Resistivity)
- Beam test preliminary results on TC (Telescope Chip) HR and IDC (Intermediate Digital Chip) HR
- Extra-uses of those chips in different projects

Chips development shared IPHC-IRFU through EUDET

What change H R substrate ?

TC / MIMOSA-26 : description

Test Results on 2010 wafers

2010 : Standard EPI layer v.s. high resistivity EPI layer
 Charge collection & S/N (Analogue output, Freq. 20 MHz)

EPI layer	Standard (~10 Ω.cm) 14 μm			High resistivity (~400 Ω.cm)			
Charge Collection (⁵⁵ Fe source)	Seed	2x2	3x3	EPI	seed	2x2	3x3
	~21%	~ 54 %	~ 71 %	10 µm	~ 36 %	~ 85 %	~ 95 %
				15 µm	~ 31 %	~ 78 %	~ 91 %
				20 µm	~ 22 %	~ 57 %	~ 76 %
S/N at seed pixel (¹⁰⁶ Ru source)	~ 20 (230 e ⁻ /11.6 e ⁻)			10 µm	~ 35		
				15 µm	~ 41		
				20 µm	~ 36		

⇒ Discriminated Output characterization

For standard epitaxial layer, the results on analogue outputs and discriminated ones are similar for the 2009 and 2010 wafers

TC / Mi-26 AHR Beam Test Set-up

TC / Mi-26AHR TB Results (no irradiation)

TC / Mi-26AHR TB Results : after 1.10¹³ N_{eq}

Extra-Use of TC

IDC / MIMOSA-22 AHR

Main parameters :

- AMS-OPTO 0.35μm
- Pixel Pitch : 18.4 / 20.7 μm
- 8 Analog test Outputs (4608 pixels)
- 128 end-column discriminators (73728 pixels)

Matrix : Sub-arrays with different diode surfaces

IDC / Mi-22 AHR beam test set-up

IDC August Test beam results

IDC August Test beam results (2)

IDC August Test beam results (3)

Mi-22 AHR beam test summary

Pixel amelioration characterization :

- No-irradiated
- After a 3.10¹² N_{eq} dose
- After a 150 kRad dose
- After a 3.10¹² N_{eq} + 150KRad dose
- New structures characterization :
 - Elongated pixels without irradiation
 - Depletion voltage pixels before / after 1.10¹³N_{eq}

at 15 and 30 °

Uses of TC / IDC architecture

Uses of TC / IDC architecture (2)

Eudet (FP6) → FP7 AIDA HP2

FOCAL (FOrward electromagnetic CALorimeter) for ALICE upgrade

Summary

- Study on 2 promising chips
- Thanks to this new substrate, we expect to improve the radio-tolerance (TC / Mi-26 AHR after 1.10¹³N_{eq})
- Use of the TC beyond Eudet project
 - First (hadrontherapie)
 - Telescope copies
 - STAR
 - AIDA telescope chips

Mi-22 AHR different sub-arrays

