Intro	Front-end	ADC	Other issues	Summary & future

Progress on readout electronics for LumiCal detector

Krzysztof Swientek

Swientek@agh.edu.pl

(FCAL collaboration)

Department of Physics and Applied Computer Science AGH University of Science and Technology

EUDET Annual Meeting, 29-30 September 2010, Hamburg

Intro	Front-end	

ADC 00000000 Other issues

Summary & future

Outline

Front-end electronics ADC prototypes Other readout issues Summary and future plans

ъ

< 口 > < 同 >

Intro	Front-end	ADC	Other issues	Summary & future

LumiCal readout architecture

Krzysztof Swientek Progress on readout electronics for LumiCal detector

Intro	Front-end ●O	ADC 00000000	Other issues	Summary & future
Front-	end electroni	re l		

- $C_{det} \approx 0 \div 100 \text{pF}$
- 1st order shaper (*T_{peak}* ≈ 60 ns)
- variable gain: MIP (calibration mode) and input charge up to 10 pC (physics mode)
- power: 8.9 mW/channel
- rate up to 3 MHz

Intro	Front-e ○●	end	ADC 00000000	Other issues	Summary & future
_					

Front-end electronics II

- ASIC contains 8 channels
- measured crosstalk < 1%</p>
- prototypes fabricated and tested (tests completed)

AMS 0.35 μm

• 4 front-end ASICs (32 channels) were used during first test

Single channel 10-bit pipeline ADC

- 1st prototype: only 8 stages (fully functional)
- 2nd prototype of complete ADC (photo)
 - 9 stages + S/H
 - digital correction
 - clock and power switching
 - external reference voltages
- 2nd prototype fully functional, tests completed

	orototype —	static and (dynamic nara	matars
Intro	Front-end	ADC 0000000	Other issues	Summary & future

00	0000000	00	000
C prototype	— power so	caling	

- power consumption scales linearly in frequency range 3 k ÷ 10 MHz
 - 0.8 mW/MHz with supply 3.0 V (plot)
 - 0.6 mW/MHz with supply 2.6 V
- useful also for CLIC

Total includes also input/output buffers

 depending on sampling frequency 8 clock cycles or 800 ns (16 clk @ 20 MHz) needed to restart correct conversion

AGH

10-bit low power high swing DAC

- 10th bit achieved by current reversing
- prototype fully functional, tests completed
- nonlinearities DNL & INL < 0.42 LSB
- ENOB = 9.8
- settling time 0.5 2 μm
- power consumption 0.6 mW

- bandgap based precise reference voltage source, prototype fully functional
- bandgap based temperature sensor, prototype fully functional
- fast LVDS driver and receiver (around 1 Gb/s), prototype fully functional
- first prototype of 1 GHz PLL based wire transceiver, prototype fully functional
- all prototypes were manufactured in AMS 0.35 technology

イロト イポト イヨト イヨト

Other issues

Summary & future

Multichannel ADC — layout

AMS 0.35 μm

Krzysztof Swientek Progress on readout electronics for LumiCal detector

Multichannel ADC — preliminary results

- gain & offset spread < 1%</p>
- maximum sampling frequency about 45 MHz

AGH

Krzysztof Swientek Progress on readout electronics for LumiCal detector

LumiCal data concentration

Krzysztof Swientek

- one ADC for each FE channel
- one FPGA (or ASIC in the future) per sensor tail (256 channels — 4 or 8 ASICs)
- one master FPGA transmitting data out per detector half-layer
- master FPGA is connected to DIF — first level of standard DAQ

-

Progress on readout electronics for LumiCal detector

AGH

Intro	Front-end 00	ADC 00000000	Other issues ○●	Summary & future			
First tests on beam							

- dedicated PCB
- LumiCal sensors with fanout
- 8 front-end ASICs (64 channels)
- external ADC (multichannel ASIC ready)

Krzysztof Swientek

Progress on readout electronics for LumiCal detector

AGH

Intro	Front-end	ADC	Other issues	Summary & future
	oo	00000000	oo	●○○

EUDET milestones, deliverable and more ...

EUDET milestones and deliverable

- prototypes of two readout ASICs: front-end and ADC are produced, tested and ready
- front-end functionality with fanout and sensors was confirmed during test beam
- more (in view of complete detector readout)
 - complex readout multichannel ADC including: multiplexer, DACs, LVDS, bandgap based references and temperature sensor is in advance stage
 - works on PLL based 1 GHz wire transmitter on progress

- re-design of front-end ASIC according to upgraded detector specification
- design a complete multichannel readout system (already started with multichannel ADC ASIC)
- proceed with data concentration and system powering
- continue the works on fast wire transmitter (already started with first PLL prototype)
- move some readout blocks to smaller size technology (promising candidate IBM 0.13 μm, works already started)

イロト 不得下 イヨト イヨト

Intro	Front-end	ADC	Other issues	Summary & future
	oo	00000000	oo	○○●
Summary	/			

- EUDET milestones and deliverable accomplished prototypes of readout ASICs: front-end and ADC ready and fully working
- first test beam with sensor, fanout and front-end succeeded
- works on complete sensors readout in advanced stage (multichannel ADC, DAC, LVDS etc.)
- the goal is to have a prototype of multilayer detector at the end of AIDA

