

CALICE DAQv2

Vincent Boudry, Ch. de la Taille LLR, École polytechnique LAL, Orsay

EUDET Annual meeting DESY, 29/09/2010

Second generation ASICs

- Add auto-trigger, analog storage, digitization and token-ring readout !!!
- Include power pulsing : <1 % duty cycle
- Address integration issues asap
- Optimize commonalities within CALICE (readout, DAQ...) SKIROC2

<u>()mega</u>

Read out: token ring

- mega Readout architecture common to all calorimeters
- Minimize data lines & power

Data bus

Chip 0	Acquisition	A/D conv.	DAQ		IDLE	MODE
Chip 1	Acquisition	A/D conv.	IDLE	DAQ		IDLE MODE
Chip 2	Acquisition	A/D conv.	IDLE			IDLE MODE
Chip 3	Acquisition	A/D conv.	IDLE			IDLE MODE
Chip 4	Acquisition	A/D conv.	IDLE		DAQ	IDLE MODE
	1ms (.5%)	.5ms (.25%)	.5ms (.25%)		199ms (99%	<mark>%)</mark>
	1% dutý	cycle		99% duty cycle		

ECAL DAQ : data volume and rate

- Raw Data volume
 - 2 bytes Energy data/Channel, 20 Million channels
 - Raw data per bunch train ~ 20M $\times~$ 5000 $\times~$ 2 ~ 200GBytes ECAL
 - No way to digitize inside the \sim ms train
 - 10 kbytes/channel/train ~ 50 kbytes/ch/s
 - Physics data rate : 90 Mbytes/train = ~20 bytes/ch/s

()mega

- Zero suppression mandatory
 - 10³ rate reduction -> drastic for power dissipation
 - Digitize only signals over 1/2MIP with noise < MIP/10
 - Allow storage in front-end ASIC

The ASU board: clock lines

 <u>Clocks</u>: 2 lines, drive every other chip, terminated at the end,

mega

- 100 ohm resistance in series inside the chip
- Clock switched off inside the chip when not used

Readout protocol : token ring Omega

 Bypass one dead chip : 2 inputs seleted by slow control

The ASU board: data lines

- Data : 4 lines : 2, doubled for redundancy
- Each chip has 2 data outputs that can be removed from each line by slow control

mega

Power pulsing sequence

 4 Power pulsing lines : analog, conversion, dac, digital

()mega

• Each chip can be forced on/off by slow control

HARDROC1: digital part

Towards an ILC technological proto

Fully equipped scalable m² SDHCAL detector built by IPN

> Ultra-low POWER : 24h operation for 10000 channels with 2 AA batteries

PC

Fully equipped scalable large MicroMégas detector built by LAPP Annecy

80

141

TET

101

be

()mega

CALICE DAQ2 scheme

• UK: CAM, MAN, UCL • FR: LLR, LAPP, IPNL • DE: DESY

Big effort for CALICE!!

~15 individuals from:

Most of Code, Manual and HW description is available on CALICE twiki: https://twiki.cern. ch/twiki/bin/view/ CALICE/CALICE DAQ

- Provide the digital readout of CALICE embedded front end
 - All calorimeter seen through 1 Detector InterFace board (DIF)
 - 1 (opt. 2) Concentrator cards level
 - ▶ 1 Clock and Control Card (CCC) for the fast signal distribution and collection
 - ► HDMI cables (aka 5 twisted shileded pairs) for physical transmission; add-hoc comm. Protocol
- 3 prototypes en route: SDHCAL (120 DIFs, 400.000 digital ch), ECAL (30 DIFs, 22.000 anal. ch), AHCAL (40 DIFs, 52.000 Anal. (En. & time) ch)
 Vincent.Boudry@in2p3.fr CALICE DAQv2, EUDET annual meeting, DESY, 29/09/2010

DCC and LDA are essentially similar to an ethernet switch but using a low level protocol

They both fan-out/in fast isochronous signals on a dedicated path and commands on the 8b/10b serial link

LDA has a fast link : Gb ethernet to the upper level = ODR, and can connect to 10 DIFs or DCC with the 8b/10b serial link

DCC can connect to 1 LDA and 9 DIFs using the 8b/10b serial link, data from DIF are buffered and sent to the LDA

LDA

- The LDA (from Enterpoint) consists of :
 - Mulldonoch2 baseboard;
 - add-on HDMI board to connect to 10 DIFs;
 an add-on ethernet board to connect to an ODR.
- · Firmware development :
 - DIF <=> LDA link running;
 - new code soon to be posted to svn;
 - same format as ODR in svn repository.

± ICI

CAMBRIDGE MANCHETER Research

MANCHESTER

MANCHESTER AND REPORT

CCC

- · Overall status unchanged for a while.
- Fans out clocks, fast commands and control signals.

UNIVERSITY OF CAMBRIDGE

- · Fans in busy.
- Full complement of 10 boards with power supplies tested.
- One in LLR and one in LAPP.
- CCC link to LDA still needs to be done :
 Board designed and firmware developed for testing;
 - Soon to produce enough boards for all LDAs.

ODR

- Receive data on 4x fibre (RX),
- Write to disk FAST (>150MB)
- Send data up fibre (TX)
- Controlled from Linux driver
- DOOCs Interface

Documentation / repository

 All components should have extensive documentation on twiki : it is being updated and as components are basically done, can soon be finalised.

UNIVERSITY OF CAMBRIDGE

- Twiki main :
- https://twiki.cern.ch/twiki/bin/view/CALICE/CALICEDAQ
- Also list of hardware availability /status started.

https://twiki.cern.ch/twiki/bin/view/CALICE/HardwareList

Clock and Control Card

- Developped in UCL (M. Warren, M. Postranecky)
- Distributes on 8 channels (HDMI, SMAs, NIM, ...) via dedicated circuiterie
 - ► Int | ext clock
 - ► Fast Signal (Trigger | Sync)
- Sums-up BUSY
- Performs Trigger logics
 - ► CPLD
- Was used as DIF-Master (dev^t of LAPP)
 - Aka also sending hard-coded commands to DIF directly

CALICE DAQv2, EUDET annual meeting, DESY, 29/09/2010

Beam InterFace card

Basis:

- CALICE chips use auto-trigger
 - Readout can be triggered by single event using external trigger (e.g. beam hodoscope)
 - \rightarrow "Single event" mode
 - History of Chip is usable (e.g. in case of selective ext. trigger)
 - Readout triggered by environmental internal or extern trigger
 - Chip full
 - ILC-like mode (end-of-spill)
- Require some device to radout the beam line parameters
 - Scintillators; Cherenkov PM (coding of CEDAR bits)
 - Time of event (\supset rec for wire chambers)

Implementation

- 2 solutions
 - Add-hoc card for interfaces with a CALICE ROC (SPIROC ?) + 1 DIF
 - Small adaption (buffers) card on a DIF + "simulation" of a digital ROC in the FPGA
- Both offer full compatibility with CALICE DIF ofr the DAQv2.
- To be implemented for 2nd version of CALICE beam test
- One of the task of AIDA (WP8.6.2)

HW status

- 10 ECAL DIF ready and working; 10 in prod; mat for 40 in total (CAM)
- DHCAL DIF: 165/170 cards tested & ready (LAPP)
- AHCAL DIF: in design, prod in NIU \rightarrow 4 unit
- CCC: 10 cards ready; 4 in use in 4 labs; 3 more shipped \rightarrow LLR
- DCC: 3 prototypes ready; 2 cards being tested \rightarrow 20 end of october
- LDA: 20 main board OK
 - ► 5 v1 + 15 v2 Ethernet mezzanine : ✓
 - ▶ 6 CCC mezzanine; clock OK Busy & Trigger not yet tested (TBC)
 - ▶ 20 HDMI Mezzanine: faulty connectors on 8 \rightarrow in repair
- ODR + PC
 - 8 ODR ready ; network card being used instead for debugging
 - ▶ 6 PC available: 1 in LLR ; 3 other ready; OS needs to be upgraded
- Future BIF: to be developped (part of AIDA)

~ No more basic problem with HW Reliability of HDMI connectors mechanics ?

Vincent.Boudry@in2p3.fr

FW status

LDA+CCC comm

Reuse MUX from DCC

	LDA	DCC	DIF's
Ethernet	✓ at full speed		
CCC (Clk; Trig; Busy	Clk; Trig; Busy	Clk; Trig; Busy
Nlinks up (9/10 conn. no MUX	9	1
Fast Commands	✓	1	✓
Block transfert	1	1	✓
Data ¹⁾	✔ (< 50 MHz)	✔ (< 50 MHz)	✓ (<50 MHz)
ROC			Structure ✓ Adapt SDHCAL USB Code on going

• FW have been advancing rather fast during the last 3 months

Generic code for all DIFs

Many progresses recently End of October for first full minimal usable chain ?

Vincent.Boudry@in2p3.fr CALICE DAQv2, EUDET annual meeting, DESY, 29/09/2010

CCC←→LDA Fast signals tests (from 29/09/2010 15:45!)

Vincent.Boudry@in2p3.fr CALICE DAQv2, EUDET annual meeting, DESY, 29/09/2010

SW status

- Many progress
 - XDAQ (L. Mirabito, Ch. Combaret) "critical part" complete:
 - Writing of LCIO data in RAW format
 - versatile online analysis framework (root histos)
 - ▶ DAQ2 interface $\leftarrow \rightarrow$ XDAQ being worked on (D. Decotigny, G. Vouters)
- Missing utilities
 - Semi-automatic noisy channels spotting & correcting (moniting) ← ← ←
 - Clean Slow control
 - interface to CondDB;
 - event display (most prob^{ly} DRUID)
 - interface to the GRID
 - interface to the machine
- Analysis environment (IPNL)
 - rec. data format in LCIO

Vincent.Boudry@in2p3.fr

CALICE DAQv2, EUDET annual meeting, DESY, 29/09/2010

Installation

- mechanics
 - mod. VME crate for
 - DCC
 - CCC
 - Special box for LDA
 - Support for cables
- Final set-up not yet known:
 - stand alone SDHCAL
 - stand alone ECAL
 - Stand alone AHCAL
 - Combined test
- \rightarrow 5 m long HDMI cables
 - halogen free;

Conclusions

- Technological prototypes of CALICE are getting close (1st will be SDHCAL → Spring 2011)
 - 2nd version of ROC chips available
 - ► Being integrated in large prototypes → extensive TB in 2011
- All DAQ HW elements available
 - FW almost ready
 - Accomplishment of a long process
- SW: XDAQ surviced natural selection
- Combined (with other system) \geq 2012
 - Prepare HW and SW beforehand
 - ◆ SW & HW ←→ TLU & EUDAQ first