
EUTelescope
(for beam tests with Mimosa26 sensors)

final status

Igor Rubinskiy

+
Joerg Behr, Antonio Bulgehroni, Ingrid Gregor,

Tatjana Klimkovich, Slava Libov,
Philipp Roloff, Filip Zarnecki,

and the Telescope users (APIX PPS+3D, ALFA, DEPFET)

EUDET-JRA1 annual meeting
DESY/Hamburg

29 September 2010

29/09/10 I.Rubinskiy, EUTelescope final status 2

 Contents

– EUTelescope releases
• Documentation
• Installation

– (EU)Telescope users in 2010
– EUTelescope Framework

• Telescope sensors (Mimosa 26)
• Easy integration of a new DUT into the framework and DUT analysis

– Summary

29/09/10 I.Rubinskiy, EUTelescope final status 3

 EUTelecope releases

– EUTelescope releases
• [Pro] Version v00-04-01

– 1 year ago - [Old] v00-02-00, a.k.a. Better User Integration (BUI)
» Python based submission scripts introduced

– 8 intermediate releases in this year
– The EUTelescope analysis framework

» mostly final,
» but there are still things to add

– significant performance improvements
» CPU
» Memory
» human intervention reduced to minimum (almost none)

– documentation is kept up-to-date with every release
» How to run the EUTelescope step by step with python scripts:

http://projects.hepforge.org/eudaq/Eutelescope/pythonScripts.html
» It is as easy to run analysis on GRID:

http://projects.hepforge.org/eudaq/Eutelescope/gridtools.html

29/09/10 I.Rubinskiy, EUTelescope final status 4

 EUTelecope releases

– Step by step (copy-paste style) instructions at
http://projects.hepforge.org/eudaq/Eutelescope/ilcinstall.html

– installation on SL4/SL5 goes without problem (other OS problematic, e.d. Ubuntu)
– Can be a bit tricky

• Due to mutual EUDAQ-EUTelescope dependencies
• Follow strictly the instructions

– Install EUDAQ
» Compile with LCIO=0 and EUTELESCOPE=0 (Makefile flags)

– Install full ilcsoft
» With EUTelescope depending on the EUDAQ library
» Recompile EUDAQ with LCIO=1 and EUTELESCOPE=1
» Recompile the EUTelescope against the new libeudaq.so

– Install Millepede II (the latest one from the svn)
• Would be good to hide this all inside of the ilcinstall scripts (!)

– Before the EUTELESCOPE analysis can be started (every new terminal session) the
environment must be loaded

• %> source $EUTELESCOPE/build_env.csh
– Now can analyse beam test data

• Go from pixels in RAW (EUDAQ format) to track parameters in LCIO (or ROOT)
• Analyse the DUT features

 EUTelecope installation

http://projects.hepforge.org/eudaq/Eutelescope/ilcinstall.html

29/09/10 I.Rubinskiy, EUTelescope final status 5

 Telescope users in 2010

user data, GB # runs location # events

FORTIS+TPAC 936 1523 1 DESY

- - - “ -

APIX (3D)/RD42(SPIDER) 534 942 1/1' CERN

NA62 15 288 0 “

APIX (Diamond) 20 221 1-2' “

APIX (PPS) 85 908 8 “

ALFA 98 532 0 “

SPIDER 8 72 - “

SILC

DEPFET

Total:
Analysis speed:(M26x6)

DUTs

~90 mln

TIMEPIX (INGRIDs)

~60 mln

~15 mln

~10 mln

~30 mln

~98 mln

~7 mln

~300 mln
~10-50 ms/evt

(raw->Tracks ntuple) [prev. ~1 s/evt]

29/09/10 I.Rubinskiy, EUTelescope final status 6

 EUTelescope data flow concept (for Telescope with Mimosa 26)

• All steps are implemented in Python scripts with a set of xml templates
• The transition from a local 'one run test job' to mass production of
hundreds of runs on grid is rather easy.

29/09/10 I.Rubinskiy, EUTelescope final status 7

 PyConverter
 (python script processing of the processors in the template converter-tmp.xml)

– Converts data from RAW to LCIO

• Converter is closely related to the EUDAQ library
• All data formats are defined in EUDAQ
• Data format conversion (raw -> lcio) is done via EUDAQ Plugins

– HotPixelKiller [to be run only on Off-Beam runs!]
• Define a “hot” pixel as firing more frequent then 1% of time per run

without beam, it looks like 10K events is enough. Default numbers: 1% and
10K events can
be changed via steering template.

• Dump the HotPixel Collection into a DB file with structure identical to a
normal data run

• The HotPixel Collection can be loaded by the Clustering processor and
the hot pixels skipped during clustering

• It's a good idea to take medium size runs (100K) without beam once in a
while to see how the hot pixel distribution changes (if at all).

29/09/10 I.Rubinskiy, EUTelescope final status 8

 PyConverter
 (python script processing of the processors in the template converter-tmp.xml)

 <execute>
 <processor name="UniversalNativeReader"/>
 <processor name="Mimosa26EUTelAutoPedestalNoiseProcessor"/>
 <processor name="HotPixelKiller"/>
 </execute>

 <processor name="UniversalNativeReader" type="EUTelNativeReader">

 <!--Resynchronize the events based on the TLU trigger ID-->
 <parameter name="SyncTriggerID" type="bool" value="false"/>

 </processor>

 <processor name="HotPixelKiller" type="EUTelHotPixelKiller">

 <parameter name="MaxAllowedFiringFreq" type="float" value="0.01"/>
 <parameter name="NoOfEventPerCycle" type="int" value="10000"/>

 <parameter name=”TotalNoOfCycle” type=”int” value=”0”/>
 </processor>

29/09/10 I.Rubinskiy, EUTelescope final status 9

• a run without beam
• ordered pixels

– 3870 total, spikes are the “hot pixels”
– define “hot pixels” as firing more often then 1% (600 pixels, 16% of all

pixels)

 PyConverter :: Hot Pixel Killer

freq.

pixel idpixel #

N
 c

ou
nt

s

29/09/10 I.Rubinskiy, EUTelescope final status 10

 <execute>
 <processor name="AIDA"/>
 <processor name="Mimosa26EUTelAutoPedestalNoiseProcessor"/>
 <processor name="LoadHotPixelDB"/>
 <processor name="Clustering"/>
 <processor name="Correlator"/>
 <processor name="Save"/>
 </execute>

 </processor>
 <parameter name="ZSClusteringAlgo" type="string" value="DFixedFrame"/>

 <!--parameter name="ZSClusteringAlgo" type="string" value="SparseCluster2"/-->
 </processor>

 PyClustering
 (python script processing of the processors in the template clusearch-tmp.xml)

new

29/09/10 I.Rubinskiy, EUTelescope final status 11

– Optimised clustering algorithms:
• Digital Fixed Frame (DFF) – a version of the Zero Suppressed Fixed Frame (FF) [J.Behr]

– Looking for clusters NxM size
• Sparse Clustering 2 (SP2) - a version of the Sparse Clustering (SP) [A.Bulgheroni]

– Follows all pixels neighbour-by-neighbour (can be complex structures)
• In both cases

– The hot pixel collection is read only once in the beginning of the run
– If in a run a pixel is found which also exists in the HotPixel DB file, it's being skipped

» for hotpixel frequency 0.01 the cluster rate goes down by 50% (speedup ~ x2)
• Some tests on a (beam) run (10602) of the clustering performance (first 10K events):

– HotPixel freq 0.01:
» DFF(3x3): 238K (sensor 0), timing (for all): 31 ms/evt.
» SP2: 228K (sensor 0), timing (for all): 18 ms/evt.

– SP2:
» HotPixel freq -0.05: 307/23, -0.10: 334/25, -0.15: 342/26 [K cluster/ ms/evt]

– DFF(3x3):
» HotPixel freq -0.05: 317/36, -0.10: 344/28, -0.15: 352/39 [K cluster/ ms/evt]

 PyClustering:: Clustering

29/09/10 I.Rubinskiy, EUTelescope final status 12

 PyClustering:: Correlator

– Correlator processor
• Build 2D correlations between sensors (the first one #0 and all others)

– sensor0(X).vs.sensor1(X), sensor0(Y).vs.sensor1(Y), etc.
– If there was beam, one must see a clear diagonal line (“correlation band”)
– By the shift of the “correlation band” from the real diagonal (from 0:0 to 1156:1156) one can calculate the

relative sensor shift -> preAlignment
• Build 2D “biased” correlation plot

– sensor0(X).vs.[sensor1(X)-sensor0(X)], etc. [must take into account sensor flip!]
– In this case the “correlation band“ goes horizontal
– Make a 1D projection and the peak position gives the sensor offset value
– Dump them into a db file with structure identical to the existing alignment-constants db file
– Apply this preAlignment constants already at the Hitmaker level

29/09/10 I.Rubinskiy, EUTelescope final status 13

<execute>
 <processor name="AIDA"/>
 <processor name="LoadOffsetDB"/>
 <processor name="HitMaker"/>
 <processor name="Correlator"/>
 <processor name="Save"/>
</execute>

<processor name="LoadOffsetDB" type="ConditionsProcessor">
 <parameter name="SimpleFileHandler" type="StringVec"> preAlignment offset-db.slcio preAlignment </parameter>
</processor>

<processor name="HitMaker" type="EUTelHitMaker">
 <parameter name="CoGAlgorithm" type="string" value="FULL"/>
</processor>

 PyHitmaker
 (python script processing of the processors in the template hitmaker-tmp.xml)

29/09/10 I.Rubinskiy, EUTelescope final status 14

– main improvement – preAlignment!

– without preAlignment (previously) the sensors relative offset could be 0.1-2 mm, which make the real alignment (Millepede
II) a bit problematic

– Now all sensors are preAligned at 0, with precision of better then pixel (half) pitch

 PyHitmaker :: HitMaker + Correlator

zoom in

29/09/10 I.Rubinskiy, EUTelescope final status 15

[AlignOptions]

ResidualXMin = -100 -100 -100 -100 -100 -100
ResidualXMax = 100 100 100 100 100 100
ResidualYMin = -100 -100 -100 -100 -100 -100
ResidualYMax = 100 100 100 100 100 100

DistanceMax = 2000

 PyAlignment
 (python script processing of the processors in the template align-tmp.xml)

 <execute>
 <processor name="AIDA"/>
 <processor name="Align"/>

 </execute>

– The sensor X/Y offset values are calculated and applied in the PyHitmaker step, so we
can set new default Residual cut values for the PyAlign step in the configuration file

– This step required a lot of manual work previously, now the demand of babysitting
significantly reduced

29/09/10 I.Rubinskiy, EUTelescope final status 16

 PyAlignment – residual plots

•Main goal achieved – sensors initially aligned around '0'
•now at the final (fine) alignment (Millepede II) we can do um level alignment
•X direction is fine
•Y direction not always fine – artefact (previously seen in other runs)

29/09/10 I.Rubinskiy, EUTelescope final status 17

 <execute>
 <processor name="LoadAlignment"/>
 <processor name="ApplyAlignment"/>
 <processor name="Fitter"/>

 </execute>

 <processor name="Fitter" type="EUTelTestFitter">

 <!--Decide now weather you want to rely on the track candidate slope permanence in X and Y, default=true -->
 <parameter name="UseSlope" type="bool" value="true"/>
 <!--Set the allowed maximum difference of the slope in X (from plane to plane), default = 0.01 -->
 <parameter name="SlopeXLimit" type="float" value="0.0001"/>
 <!--Set the allowed maximum difference of the slope in Y (from plane to plane), default = 0.01 -->
 <parameter name="SlopeYLimit" type="float" value="0.0001"/>
 <!--Maximal allowed (initial) distance between hits in the XY plane between the planes,default = 2. mm -->
 <parameter name="SlopeDistanceMax" type="float" value="@DistanceMax@"/>

 </processor>

 PyFitter
 (python script processing of the processors in the template fitter-tmp.xml)

29/09/10 I.Rubinskiy, EUTelescope final status 18

 PyFitter – UseSlope (Beam slope constraint)

• UseSlope control card - reduces the hit selection combinatorics
• Each subsequent pair of hits is required to have only a very small difference
in the slope,

• default value is 0.01 for the (X and Y) difference of (x1-x0)/(z1-z0)
• Since the slope has a meaning of the track angle it does not depend on
the z-distance between the sensors

29/09/10 I.Rubinskiy, EUTelescope final status 19

• Performance improvement – 1-2 orders of magnitude
• Y-Artefacts from the alignment level are almost not seen (track chi2<10)

 PyFitter – biased residuals

29/09/10 I.Rubinskiy, EUTelescope final status 20

• The benchamrking was done on run 10602 (July 2010 APIX data)
– Using run 10494 without beam to prepare the HotPixel DB
– Define a hot pixel as one with firing freq =1%
– Only 6 Mimosa 26 sensors are considered (no DUT)

• Presently the slowest step is (still) the Clustering
– Converter: 1 us/evt [tot: 0.5 ms/evt, or 8 ms/evt HotPixelDB]
– Clustering: 18 ms/evt [tot: 20 ms/evt, excl. Correlator which runs on first 10K]
– HitMaker: 4ms/evt [tot: 5 ms/evt, also excl.Correlator]
– Alignment: 1.3 ms/evt [tot: 1.3 ms/evt]
– Fitter: 14 ms/evt [tot: 19 ms/evt], allowing 2 hits to be skipped (slow)

• if none of the hits are to be skipped, the Fitter is ~x10 faster.
• Total 12 min per 10K events, but scales not linearily with # events

 EUTelescope - Timing

29/09/10 I.Rubinskiy, EUTelescope final status 21

• The latest improvements to the EUTelescope library are discussed
– Main focus in the last year developments have been given to performance improvements
– Lots of effort put into it
– Net estimation of the performance gain is at the level of at least factor x10 (some tests show

even higher gain up to 2 orders of magnitude)
• Any Mimosa 26 sensor can be treated as DUT and visa versa (!)

– any DUT can be treated as part of the Telescope
– So full DUT analysis can be fully performed in the EUTelescope

• The EUTelescope library is in a very good shape now

• Still few things to finish:
– Work on the sensor Geometry description in Gear to allow tilted sensors beam tests

• 6D alignment with Millepede II have been already implemented
• very urgent (!)

– Continue on the B.U.I. (Better User Integration)
• Can we do the installation fully automatic?

 Summary

29/09/10 I.Rubinskiy, EUTelescope final status 22

 Backup

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

