Fritiof (FTF) model in Geant4, latest improvements V. Uzhinsky (Geant4 hadronic working group) EUDET Annual meeting, 29-09-2010

HARP-CDP hadroproduction data: Comparison with FLUKA and GEANT4 simulations. HARP-CDP Collaboration (A. Bolshakova *et al.*) CERN-PH-EP-2010-017, Jun 2010. 21pp. Submitted to Eur.Phys.J.C, e-Print: arXiv:1006.3429 [hep-ex]

All MC models (Geant4, LAQGSM, DPMJET, UrQMD) assume that there is a change in the hadron-nucleus interaction mechanism at Plab ~4 – 10 GeV/c.

Questions:

- 1. Is there a real transition in the nature? What is its physics?
- 2. What can we do to improve the MC models?

Why does not the HARP-CDP group use the FTF-BERT Physics List announced as one of the best PL for LHC collaborations?

How well does the FTF model evolve.

FTF, June 2010

FTF, September 2010

FTF model is going in the right direction! But it was very heavily to improve it.

New things have been implemented in FTF last time!

- 1. Phase space restrictions at low mass string fragmentation
- 2. Correction of intra-nuclear interaction number
- 3. Tuning of reggeon cascading parameters

Μ

Elastic scattering

P., (GeV/c)

P (GeV/c)

Phase space restrictions at low mass string fragmentation

Solution: probability of a final state is proportional to PS~q_{2 part. decay}

PP interaction, channel cross sections

Phase space restrictions at low mass string fragmentation Excellent results for PP interactions!

5

Phase space restrictions at low mass string fragmentation

Check of inclusive cross sections for PN interactions, HARP-CDP data

Correction of intra-nuclear interaction number

Source of the problem: the AGK cutting rules are asymptotical ones!

Uzhi rules

S.Yu. Shmakov, V.V. Uzhinsky, Zeit. fur Phys. C36:77,1987. Max. cross section method:

W.A. Coleman: Nucl. Sci. Eng. 32 (1968) 76

Correction of intra-nuclear interaction number

Nmax=1, Plab=3, 5 GeV/c: Nmax=2, Plab=8 GeV/c: Nmax=3, Plab=12

Correction of intra-nuclear interaction number

All O.K. with Pi-mesons!

Nmax=Plab/4 (GeV/c)

Tuning of reggeon cascading parameters

Si+A, 14.7 GeV/N T – energy in ZDC

Model of nuclear disintegration in high-energy nucleus nucleus interactions. K. Abdel-Waged, V.V. Uzhinsky Phys.Atom.Nucl.60:828-840,1997, Yad.Fiz.60:925-937,1997.

$$Y = G \int d\xi' d^2 b' F_{N\pi} (\vec{b} - \vec{b'}, \xi - \xi') \times F_{\pi N} (\vec{b'} - \vec{s_1}, \xi') F_{\pi N} (\vec{b'} - \vec{s_2}, \xi'),$$

G is 3-pomeron vertex constant, \vec{b} - impact parameter of incident hadron, $\vec{s_1}$, $\vec{s_2}$ - impact coordinates of nuclear nucleons. $\vec{b'}$ is the position of pomeron interactions vertex in the impact parameter plane, ξ' -its rapidity.

Using Gaussian parameterization for $F_{\pi N}$ $(F_{\pi N} = exp(-(|\vec{b}|^2)/(R_{\pi N}^2))$ and neglecting its dependence on energy, we have

$$Y \simeq G(\xi_0 - 2\epsilon) \frac{R_{\pi N}^2}{3} exp(-(\vec{b} - (\vec{s}_1 + \vec{s}_2)/2)^2/3R_{\pi N}^2) \times exp(-(\vec{s}_1 - \vec{s}_2)^2/2R_{\pi N}^2),$$

where $R_{\pi N}$ is the pion-nucleon interaction radius. According to (2) the contribution reaches a maximum if the nucleon coordinates $\vec{s_1}$ and $\vec{s_2}$ coincide and decreases very fast with increasing the distance between the nucleons. For reproduction of this behavior we choose ϕ as

11

$$\phi(\mid \vec{s_i} - \vec{s_j} \mid) = Cexp(-\frac{\mid \vec{s_i} - \vec{s_j} \mid^2}{r_c^2})$$

In case of dissociation of two compound systems 4 and B containing A and B constituents respectively, the *i*-th constituent of system A will be described by

 $x_{t}^{+} = (E_{Ad} + p_{tx})/W_{A}^{-}$ and p_{t+1} ,

and the j-th constituent of system B

$$\overline{q} = (E_{\mu j} + q_{jz})/W_B^-$$
 and q_{11} .

Here, $E_{A_i}(E_{B_i})$ and $\mathbf{p}_i(\mathbf{q}_i)$ are energy and momentum of i th constituent from A(D).

$$\mathcal{W}_A^{+} = \sum_{t=1}^A (E_{At} + p_{t2}), \quad \mathcal{W}_B^{-} = \sum_{t=1}^E (E_{Bt} + q_{t2}).$$

Using these variables, let us write the conservation law as

$$\begin{split} & \frac{W_A^*}{2} + \frac{1}{2W_A^*} \sum_{t=1}^{A} \frac{m_{t\perp}^*}{r_t^*} + \frac{W_E^*}{2} + \frac{1}{2W_E^*} \sum_{t=1}^{B} \frac{\mu_{t\perp}^*}{y_t^*} \\ &= E_A^* + E_B^0, \\ & \frac{W_A^*}{2} - \frac{1}{2W_A^*} \sum_{i=1}^{A} \frac{m_{d\perp}^2}{x_t^*} - \frac{W_E}{2} + \frac{1}{2W_E^*} \sum_{i=1}^{H} \frac{\mu_i^*}{y_t^*} \\ &- F_A^0 + P_B^0. \\ & \frac{A}{t-1} \mathbf{p}_{t\perp} + \sum_{t=1}^{E} \mathbf{q}_{t\perp} = 0, \end{split}$$
(15)

where $m_{t\perp}^2 = m_t^2 + \mathbf{p}_{t\perp}^2$, $\mu_{t\perp}^2 = \mu_t^2 + \mathbf{q}_{t\perp}^2$, and $m_t(\mu_t) = \max_{t} t_t$ ensumers from system A(B).

System (15) allows us to determine $W_{A^{+}}^{+}W_{E^{-}}^{-}$ and kinematic characteristics all the particles in the finite sets $\{x_{i}^{+}, \mathbf{p}_{i+1}\}, \{y_{i}^{-}, q_{i+1}\}.$

$$W_A^{\dagger} = (W_0^- W_0^+ + \alpha - \beta + \sqrt{\Delta})/2W_0^-;$$
 (16)

$$W_{44} = (W_{45} W_{45} - \alpha + \beta + \sqrt{\Delta})/(2W_{45};$$
 (17)
 $W_{6}^{-} = (F_A^{0} + \overline{E}_B^{0}) + (F_{A_4}^{0} + \overline{P}_{B_4}^{0});$
 $W_{7}^{-} = (F_A^{0} + \overline{e}_B^{0}) + (F_{A_4}^{0} + \overline{P}_{B_4}^{0});$

$$\begin{split} &\alpha = \sum_{i=1}^{A} \frac{m_{\ell_{\perp}}^2}{x_{\ell_{\perp}}^2}, \quad \beta = \sum_{i=1}^{B} \frac{\mu_{\ell_{\perp}}^2}{y_{\ell_{\perp}}^2}; \\ &\Lambda = (W_0^- W_0^+)^2 + \alpha^2 + \beta^2 - 2W_0^- W_0^+ \alpha - \\ &- 2W_0^- W_0^+ \beta - 2\alpha\beta; \end{split}$$

Tuning of reggeon cascading parameters

Complex analysis of gold interactions with photoemulsion nuclei at 10.7-GeV/nucleon within the framework of cascade and FRITIOF models. By EMU-01 Collaboration (M.I. Adamovich *et al.*). 1997. Zeit. fur Phys.A358:337-351,1997.

To reproduce this result the values of $\mathbf{p}_{i\perp}$ for knocked-out nucleons are simulated according to distribution

$$dW \propto \exp(-\mathbf{p}_{i\perp}^2/\langle p_{\perp}^2 \rangle) d^2 p_{i\perp}, \sqrt{\langle p_{\perp}^2 \rangle} = 0.05.$$
 (18)

The sum of transverse momenta (with sign "minus") was ascribed to the residual nucleus.

The chose of x_i^+ is carried out by

$$dW \propto \exp[-(x_i^+ - 1/A)^2/(d_x/A)^2]dx_i^+, \quad d_x = 0.05.$$
 (19)

The dispersion of the distribution was defined by fitting the average emission angle of *b*-particles. x^+ of the residual nucleus was included as $1 - \sum x_i^+$.

Main parameters: Cnd, d_x , p_T^2

Tuning of reggeon cascading parameters

Unexpected results of the tuning!

Clear signal of a transition regime! The transition takes place at Plab= 4-5 GeV/c

Tuning of reggeon cascading parameters - Results

All is beautiful!

Smooth transition

Smooth transition

Possible experimental check

Summary

- 1. 3 new things are introduced in FTF for pp- and pA-interactions:
 a) Phase space restrictions at low mass string fragmentation
 b) Correction of multiplicity of intra-nuclear collisions
 c) Tuning of RTIM parameters
- 2. Good results are obtained for pp- and pA-interactions, especially for description of HARP-CDP data. The description of HARP-CDP data on pA-interactions (Be, C, Cu, Ta, Pb) is the best among other models!
- 3. The best low energy partner of FTF is the Bertini model. The corresponding transition region is 3 8 GeV/c.
- 4. It would be well to improve the Bertini model. Improving of the Binary model is heavily desirable!
- 5. <u>A strong indication on transition regime realization is obtained!</u>

This work is supported by the Commission of the European Communities under the 6th Framework Programme Structuring the European Research Area, contract number RII3-CT-2006-026126, as part of the EUDET project.