Geant4 validation on AHCAL data

Alexander Kaplan (Universität Heidelberg) on behalf of the FLC HCAL group

Event Sample

Data

- π^{\pm}
- 8 GeV 80 GeV
- $\approx 100\,000$ events per energy
- Simulation
 - 200 000 events per list and energy
 - Digitisation simulating detector effects
- Measurements:
 - Nuclear interaction length
 - Leakage corrected response and resolution
 - Longitudinal and radial shower shape

The analysis shown here was done by B.Lutz (DESY / Universität Hamburg) in the framework of his Ph.D. thesis

All data shown here acquired with the CALICE AHCAL prototype during test beam 2007 at CERN SPS H6

Highly granular Scintillator-Fe

- <u>Calorimeter</u> ~ 5.3 λ_{int}
- Longitudinal segmentation: 38 layers à 3 cm
- Transverse:
- 216 cells from $3x3 \text{ cm}^2$ to $12x12 \text{ cm}^2$
- 7608 channels readout with Silicon Photomultipliers

Physics Lists

- Geant4 organises models in "physics lists"
- >20 different hadron lists
- 13 tested
- Will show 4 representative
 - LHEP
 - QGSP_BERT
 - FTF_BIC
 - CHIPS

- Random selection of model in transition region
- LEP stop gap in case low an high energy models cannot be matched

Geant 4.9.3 final version (12/2009)

CHIPS: no transition region, only available from version 4.9.3.p01

29/09/2010

Identifying the First Hadronic Interaction

- 1 MIP signal
- 2 MIP signal
- 3 MIP signal
- Iarger signal

- Cluster based
- Seeded by hits > 1 MIP
- Optimised thresholds with simulation
 - Cluster energy
 - Cluster hits
 - Cluster angle

- One threshold set for all beam energies
- Simulation model dependent
 - Position resolution
 - Systematic z-shift
- z-resolution typically one layer distance
- Estimated systematic z-uncertainty from different simulation models

Nuclear Interaction Length of π

- Measured nuclear interaction length $\lambda_{I,\pi}$ consistent within fit systematics
- Agreement between simulation and data
- Method allows to measure longitudinal profile without fluctuations in first interaction

Leakage Corrected Response

string+cascade within errors — only CHIPS flat like data

29/09/2010

cascade models good — CHIPS/LHEP wrong tails

Longitudinal Shape from Start

increased sensitivity with profile from starting point

Longitudinal Shape from Start FTF_BIC 40 ×10⁻³ π⁺ 80GeV ∠28.3° $\oplus \oplus \oplus \oplus \ominus$ full systematics B.Lutz Ph.D. thesis results evt×cm² start systematics MР QGSP BERT 30 FTF_BIC **QGSP_BERT** CHIPS LHEP data Ш ^{Vis} $\oplus \bigcirc \oplus \oplus \ominus$ 20 **CHIPS** 10 $\ominus \ominus \ominus \ominus \ominus \ominus \ominus \ominus$ ۷ MC/data 1.5 LHEP $\ominus \ominus \ominus \ominus \oplus$ \bigcirc 0 200 400 600 800 1000 z [mm]

LHEP matches — others overestimate shower maximum

EUDET Meeting, DESY Hamburg

29/09/2010

Longitudinal at 0< $r \leq 6 \,\mathrm{cm}$

overshoot stronger — LHEP too long

Longitudinal at $12 < r \le 18 \text{ cm}$

string models less deviations — LHEP too short

Simulation Validation Results

High granularity \Rightarrow new level of detail in test of hadron shower models

QGSP_BERT & FTF_BIC

- Reasonable description of response and resolution
- Good description of low energy shower shape
- Fail to describe high energy shower shape (String Models)
- Largest difference in the shower core
- LHEP
 - Outperformed in almost all aspects
 - Should be replaced in other physics lists
- CHIPS
 - Least successful physics list in the tested version
 - Less artifacts than compound lists
 - Needs further development

BACKUP SLIDES

Leakage

- Depends on beam energy
 - \rightarrow Non-linear detector response
- Fluctuations worsen resolution
- Depends on shower starting point
 - ⇒ Can correct average expected leakage knowing where shower starts

- Mean energy corrected
- Resolution improved

29/09/2010

Leakage Correction Result

Linearity Improved from 5% to 1% at 80 GeV Resolution Improved by more than 10% at 80 GeV

```
29/09/2010
```