VERY BUSY INFRASTRUCTURES -EUDET JRA1 FROM 2006 - 2010

Ingrid- Maria Gregor on behalf of the JRA1 team

EUDET Annual Meeting September 30th 2010 Hamburg

JRA1: TEST BEAM INFRASTRUCTURE

Large bore magnet:

- 1Tesla, Ø≈85 cm, stand-alone He cooling, supplied by KEK
- Infrastructure (control, fieldmapping, etc.) through EUDET
- Magnet fully instrumented at DESY and ready for use

Pixel beam telescope:

- 6 layers of Monolithic Active Pixel Sensor (MAPS) detectors
- DEPFET and ISIS pixel detectors for validation
- DAQ system
- Two staged approach

Tasks:

- A: Magnet
- B: Pixel Telescope Integration
- C: Pixel Telescope
- D: Data Acquisition and Evaluation Software
- E: Validation of Infrastructure

EVOLUTION OF TASK A: MAGNET

- 2006 Lending details about magnet loan finalised
 - Arrival of magnet at DESY in November
 - First turn on of magnet December 10th
- 2007 Field map measurement July
 - Final field map available only in December -> analysis of data more challenging than expected
- 2008 Transfer line for filling the liquid helium was improved and the existing procedure automated
 - Installation of large TPC prototype
- **2009** Completion of rotatable table
- 2010 Regularily used by TPC group and users

DESY

Ingrid-Maria Gregor, Status of the EUDET Telescope

Details in JRA2 Session (Klaus Dehmelt)

2006

2007

OUR QUEST - BUILD A BEAM TELESCOPE

As defined during Kick-off Meeting February 2006

Generally applicable:

- DUTs: from small pixel sensors to larger detectors
- Movement of DUT to scan larger surface
- Large range of conditions: cooling, positioning, (B-Field)
- Easy to use: well defined/described interface
- Very high precision: $<3 \mu m$ precision even at smaller energies
- Trigger rate ~ 1kHz
- Movable!

$-20^{+} < 7 < 20^{+}$ lhickness 110_Am S.i 30 µn Al, 14. ma 06 Vindow

A., A., A., A., A., A., A. - 5-40 mm

First sketch Kick-Off meeting 2006

Two staged approach

- Demonstrator telescope with analog sensors as soon as possible.
- Final Telescope with digital sensors, final resolution and high readout rate.

Ingrid-Maria Gregor, Status of the EUDET Telescope

TELESCOPE INGREDIENTS

EVOLUTION OF TASK: TELESCOPE SENSORS

2006 SDC propotype 1 (MimoTel) planned and achieved for month 9

- High resolution plane Mimosa18 also available
- SDC prototype 2 (SUZE01) available in month 15
 - Intermediate chip (Mimosa22) submitted
- SUZE01 fully tested
 - Mimosa22 available month 27
 - Telescope Chip Mimosa26 fully designed
 - Mimosa26 returned from foundry end of February, first results are available in March
 - Available for telescope spring; implementation in telescope postponed to September on users request

MimoTel

Previous Talk (Jerome Baudot)

2007

2008

2009

EVOLUTION OF TASK: DAQ

Comprises DAQ hardware, DAQ software and Tracking/Reconstruction Software for evaluation

- **2006** Decision on DAQ hardware and software concept
 - First trigger logic unit (TLU) available
- 2007 First EUDRB available (spring)
 - DAQ software EUDAQ first version tested
 - Full system tested at beams at DESY and CERN
 - Analysis and reconstruction software tested
- 2008 Updates in firmware of EUDRB and TLU
 - Final version of EUDAQ available
 - Reconstruction software finalised
- 2009 Upgrade of EUDRB producer for the Final sensor (TC)
 - Implementation of EUDRB firmware for (TC)
- **2010** Mainly user support (DUT implementation in EUDAQ)

EVOLUTION OF TASK: TELESCOPE

Arm 1

Comprises mechanics, cooling and telescope infrastructure

- 2006 Simulations on setup to define concept
 - Design fixed: Flexible mechanics needed with two telescope arms and adjustable space for DUT
- 2007 Finalisation and production of mechanics
 - Procurement of additional infrastructure e.g. cooling, power and XY table
 - June: Demonstrator telescope available!
- 2008 Improvement of mechanical alignment and cooling
 - Testbeam at CERN with many different users proved overall concept
- 2009 Decision to delay "final telescope" until after summer -> users prefer known demonstrator over final telescope
 - Final telescope available!
- 2010 Almost continuous user business!

Arm 2

TELESCOPE MECHANICS CONCEPT

Plan: to develop a stable, flexible mechanics for small and also large DUTs.

Arm 1 and 2:

- Movable in z-direction, optical bench for three reference planes.
- Distances between planes are variable from 10 to 150 mm.
- Separate sensor boxes for each plane.

DUT position:

- Gap between arm 1 and 2: variable in size from a few cm up to 35 cm (on special request extendable)
- DUT positioned on XYφtable (optional)

Sensor planes on mechanical support

Mimosa26 positioned in sensor box (precisely machined; pins for positioning)

METAMORPHOSIS

DESY June 2007

CERN 2008

DESY 2009

CERN 2010

THE FINAL MECHANICS

Not magnetic material -> one arm fits into PCMAG!

- Overall mechanics now rather big as we allow the insertion of rather large DUTs
- "Rose&Krieger" mechanical profiles give the system a good flexibility while keeping a stable mechanics
- Rotation of general telescope plane versus the beam axis (few degrees) to ease the adjustment with respect to the beam

Pluggable cooling hoses for easy installation $_{11}$

INFRASTRUCTURE

- Infrastructure for JRA1 telescope is significant:
 - Mechanics
 - Cooling
 - Power supplies
 - Support XY table
 - DUT table
 - Computer for DUT positioner
 - Cables
 - Webpages
 - Analysis Software
 - Postdocs, Students ;-)

Analysis and Reconstruction Software

NEEDED A GOOD TOOL FOR USERS

TestFitter

 χ^2 minimum can be found by solving the matrix equation.

Antonio Bulgheroni, April 2006

Filip Zarnecki, Spring 2007

- Gain as much as possible from past experience and already available and tested software tools:
 - Single sensor analysis \rightarrow sucimaPix (INFN)
 - Eta function correction \rightarrow MAF (IPHC)
 - Track fitting \rightarrow **Analytical track fitting** and straight line fitting
 - Alignment → Millepede II
 - Framework \rightarrow ILC Core software = Marlin + LCIO + GEAR + (R)AIDA + CED (+ LCCD).

14

ANALYSIS AND RECONSTRUCTION SOFTWARE

- Each module is implemented in a Marlin processor
- Execute all of them together, or stop after every single step.
- Advantages when debugging the system.
- Can offer the user different level of information.

 In 2010 the main focus was on faster processing of data, full automatisation and better DUT analysis tools

Status 2010

EUTELESCOPE SOFTWARE

EUTelescope release [Pro] Version v00-04-01

- in the last year
 - Python based submission scripts introduced
 - 8 intermediate releases
- The EUTelescope analysis framework is now final,
 - but there are always things to add or improve
- Significant performance improvements done
 - CPU time reduction
 - Memory usage reduction
 - human intervention reduced to minimum (almost none)
- documentation is kept up-to-date with every release

 How to run the EUTelescope step by step with python scripts: <u>http://projects.hepforge.org/eudaq/Eutelescope/pythonScripts.html</u>
It is as easy to run analysis on GRID: http://projects.hepforge.org/eudaq/Eutelescope/gridtools.html

For details: Igor Rubinskiy and Slava Libov (JRA1 Parallel Session)

Optimised clustering Hot pixel data base Automated alignment (correlator) DUT analysis improvements

Pointing Resolution

M26 AS REF. PLANES

- Dedicated data to measure performance of telescope (120 GeV pions, SPS Sept. 2009)
- 5 planes with Mimosa26 (S/N = 10)
- Included 4 planes in track fit and treated 5th plane as DUT -> iterated for all planes
- Convolution of telescope resolution and **DUT** resolution

$$\sigma_{meas.}^2 = \sigma_{tel}^2 + \sigma_{M26}^2 + \sigma_{M26}^2$$

 $\sigma_{tel}^2 = k \cdot \sigma_{M26}^2$

M26 AS REF. PLANES

- Combined averaging for the extraction of σ_{M26}
- single-point resolution
 - $\Rightarrow \sigma_{M26} \approx 4.33$
- Prediction for geo. scaling in good agreement with measurement.
- Within uncertainties in agreement with IPHC measurements (S/N =10)
- Measured of intrinsic resolution from IPHC: **3.5um**
- Telescope now ususally running with lower threshold
- Dedicated threshold scan planned for next week (finally time for our own studies)

Plot: Joerg Behr (phd Thesis)

POINTING RESOLUTION

- Best position for DUT: centrally in the telescope.
- Best pointing resolution: <2.0 µm (six Mimosa26; intrinsic resol. <4.3µm (S/N<10)).
- Further improvement by adding Mimosa18s close to DUT (~1µm).

- Massive and larger detectors are better positioned behind telescope: pointing resolutions of < 5µm can be achieved by reducing the distance.</p>
- Even in a distance of 1.5m behind the last plane a estimated pointing resolution of better than 25µm is possible (no further material between last active plane and DUT).

ALIGNMENT - STABILITY

- Alignment (MillepedeII) fully automatic (preselection with newly introduced correlator)
- Comparison of alignment constants for different runs
- Alignment constants very stable.

see https://www.wiki.terascale.de/index.php/Millepede_II

The Use of the Infrastructure

USERS 2010

Dates	Beam line	User group	responsible		
10.0515.05.	DESY	APIX(PPS)	Jens Weingarten		
17.0520.05.	DESY	Timepix	Jan Timmermans		
07.0614.06	CERN	RD42/SPIDER	Jens Weingarten		
14.0621.06	CERN	ATLAS -3DSi	Philippe Grenier		
21.0605.07	CERN	NA62	Tonino Sergi		
05.0726.07	CERN	APIX (PPS)	Jens Weingarten		
09.08-23.08	CERN	APIX-Diam.	Jens Weingarten		
23.0820.09	CERN	ALFA	Karlheinz Hiller		
20.0927.09	CERN	SPIDER	Jaap Velthuis		
27.0911.10	CERN	SILC/EUDET	Thomas Bergauer		
11.1025.10	CERN	APIX (PPS)	Jens Weingarten		
25.1008.11	CERN	APIX (IBL)	A.LaR, PG, JW		
08.1115.11	CERN	SILCRD	David Cussans		
15.1121.11	CERN	DEPFET	Julia Furletova		

When preparing the schedule we always try to find time for every group independent of the community. Requests from LHC community rising.

Current user

Other

LC

- Telescope will be moved back to DESY end of November
- First bookings for Februar, March and April 2010

USER STATISTIC

Details for 2010

USER	Data size	#runs	# DUTs	BEAM	# events
FORTIS+TPAC	936	1523	1	DESY	~90 mio
TIMEPIX	-	-	-	"	-
APIX/RD42/SPIDER	534	942	1/1	CERN	~60 mio
NA62	15	288	0*	"	~15 mio
APIX (Diamond)	20	221	1-2	"	~10 mio
APIX (PPS)	85	908	8	"	~30 mio
ALFA	98	532	0*	"	~98 mio
SPIDER	8	72		"	~7 mio
SiLC					
DEPFET					
TOTAL					~300 mio

telescope running for users

weeks for own development work

TELESCOPE USERS 2007-2010

25

LATEST USER RESULTS 2010

For details: David Cussans (JRA1 Parallel Session)

Generic detector R&D for Silicon Pixel **Detectors** (SPiDER) TPAC -> developed for digital readout of the ECAL Successful test at DESY spring 2010 Layer1VsLayer0pXX Sensor 29/Layer 1 x vs Sensor 43/Layer 0 x pixel correlation Entries 6787 81.28 Mean x 160 Mean y 79.67 RMS x 44.05 High-res 12mu High-res 18mu Standard CMOS Deep P-well RMS y 42.19 Efficiency MIP 0.8 0.6 TPAC 0.4 Preliminary 0.2 140 60 80 100 120 160 40 0<u>0</u> 100 200 300 400 500 600 Threshold (electrons)

TPAC at **DESY**

26

LATEST USER RESULTS 2010

For details: Slava Libov (JRA1 Parallel Session)

ATLAS-Pixel (PPS for IBL) 4 DUTs 4 DUTs

Charge sharing probability versus position

- Three different sensor technologies are under investigation for the ATLAS Insertable B-Layer (upgrade ~2016)
- All three collaborations used the EUDET telescope for independent test beams this summer
- Combined test beam planned for October
- All user EUTelescope for tracking and reconstruction
- DUT analysis also possible with EUTelescope frame work !!

Outlook - PLUME and AIDA

AIDA - WP 9.3 PIXEL DETECTORS

- The main infrastructure is a beam telescope for characterization of prototypes
- Continuation of the EUDET telescope and surrounding infrastructure,
- Catering to sLHC needs (CO2 cooling plant, fast telescope arms)
- Infrastructure for thermomechanical characterization envisaged at DESY

First ideas for next generation telescope

- Starting on the base of existing telescope
- User can choose from three different technologies:
 - ATLAS pix: LHC timing
 - Timepix: high precision timing and high resolution
 - Mimosa: large area (e.g. 4x4 cm²) and high resolution
- Segmented trigger: easier tracking (Hodoscope)
- Possible further improvement: self triggered sensor
- New version of TLU: tagging

mechanical

PLUME PIXELATED LADDER WITH ULTRA-MATERIAL EMBEDDING LOW

Geometry for an ILD vertex detector, 2009-2012

Objectives:

achieve a doublesided ladder prototype for an ILD vertex detector by 2012 (DBDUME collaboration: Bristol University

support

Transversal view

- material budget : < 0.3% X₀ (final goal for 2012 prototype)
- quantify power pulsing and air-flow cooling effects on final sensor spatial resolution (Hamburg)
- evaluate benefits of double-sided concept (mini-vectors)

Baseline:

- MIMOSA-26 CMOS sensor (developed for EUDET-Telescope)
- Power pulsing (< 200ms period, \sim 1/50 duty cycle) and power dissipation (100mW/cm²) 50 µm sensors
- Air cooling

Current concept :

- 6 x MIMOSA-26 thinned down to 50µm
- Kapton-metal flex cable
- Silicon carbide foam (8% density) stiffener, 2mm thickness
- Wire bonding for flex outer world connection
- Digital readout

PLUME2010: to realize & test the first version of the full device with relaxed specifications

6 sensors 12×1 cm²

12 cm

Longitudinal view

Oxford University

ow mass flex cable.

IPHC (Strasbourg)

to servicing board ~ 1m

suppor

WHAT DID WE LEARN?

All together the EUDET telescope was running 84 weeks in test beams
>1 Billion events and >10 Tbyte of data

To make the telescope a true infrastructure for users is a lot of work!

- What would we do differently?
 - Use (semi) commercial DAQ boards from the start.
 - Use stand-alone analysis software (Marlin is a difficult for non ILC users).
 - Segmented trigger.
 - Promise less support ;-)

Very important "side effect" (true for all JRAs):

- Telescope has almost 4 million channels ~ HEP experiment of the 90s
- All aspects of a HEP experiment: data taking, triggering, data processing, alignment, analysis, interaction with matter, working in a team

Unique opportunity for students to get hands-on experience !!

Conclusions

- EUDET is a great opportunity for teams involved in detector R&D.
- Everybody can join the fun and use the developed infrastructure to test their own devices (also non-ILC communities!)
- AIDA will hopefully continue this adventure
- The EUDET telescope is very successful since summer 2007 (demonstrator and now also the final version).
- Telescope Version 2010 is running at CERN SPS since June 1st and will stay the rest of the season. Afterwards back to DESY for more users.
- The telescope is working very stably and according to specs:
 - flexible
 - (usable in magnetic field)
 - easy DUT integration (incl. analysis)
 - trigger rate of ~1kHz
 - pointing resolution of <2um</p>

First CERN test beam in 2007

THE FUTURE YET TO COME

SOME STATISTICS

