

lrfu

saclav

Annual meeting, 28/10-1/11 2010, Hamburg

The final JRA1 beam telescope chip and its successors

- Where did we start from ?
- The demonstrator sensor
- The road to high speed (I&SDC)
- Performances of the final TC
- Improving the final TC
- Outlook

Jérôme Baudot, IPHC on behalf of the collaboration:

Institut Plur

Requirements on the telescope chip (TC)

- Single point resolution 2-4 µm
- Thickness in the sensitive area < 100 µm</p>
- Readout time 5-10 kHz
- Operation at controlled temperature ~20 °C
- Radiation induced by $10^{11} e^{-1}$ or $10^{12} \pi^{-1}$ per year
 - \leq 100 Krad
 - $\bullet \quad \leq 10^{12} \ n_{_{eq}}^{}/cm^2$
- Quantity: 6 planes and some spares

Time-line

- 2007: Provide a readily available sensor for the demonstrator telescope
- 2009: final Telescope Chip

The demonstrator chips

Demonstrating the resolution

- No need (yet) for fast readout speed
 allow to use analog output
- Minimal sensitive area 5x5 mm²
- Provide standard res. for telescope arms and high res. for proximity reference

MIMOSA 17, 18

- Process AMS 0.35 µm OPTO
- 14µm epitaxial layer
- "self-bias" pixel
 - \rightarrow 1 readout = 1 frame ([n]-[n-1])
- Fabricated in 2006
- Clock frequency 20 MHz
 & 4 parallel outputs
 - \rightarrow 860 μs readout time for M17
 - \rightarrow 3276 μs readout time for M18

The road to high speed

Read only the necessary information

- Include CDS (correlated double sampling) in pixel
- Discriminate pixel output
- Suppress zeros
 - ⇒ column parallel binary output

A new sensor architecture needed

- 2 intermediate chips for each functionality
- Process AMS 0.35 µm OPTO
- Fabricated 2007 & 2008

IDC = MIMOSA 22

- pixels with CDS + discriminator
- 128 columns x 576 rows
- pixels with 18.4 µm pitch
- JTAG protocol for external tuning of steering voltages

SDC-2 = SUZE 01

- zeros suppression logic
- ➔ 4 memories for readout

IDC / Mimosa 22 & 22bis

- Results from the evolution of several precursors (MIMOSA 8, 16)
- ~30 pixel variants to optimize ampli.
 - for CDS
 - for homogeneity / discrimination
 - for radiation tolerance
- → Operation: t_{r.o.} = 92.5 µs (80 MHz), T=20 °C
- Tested in beam with 120 GeV π- in 2008
 - Efficiency >99.8% with fake <10⁻⁴ hits/pixel
 - $\sigma_{\rm s.p.}$ = 3.5 µm
 - Perf. Unaffected after 150 kRad

SDC-2 / SUZE 01

- Input patterns to mimic discriminator outputs
- Millions of inputs tested w/o errors
- Frequency 100 MHz = 1.15 x nominal
- → Validated to handle > 100 hits/ frame @ 10^4 frame/s $\rightarrow 10^6$ hits/s

Analog outputs

for test only

TC / MIMOSA 26 ~ 10x MIMOSA 22 + 18x SUZE 01

- Process AMS 0.35 µm OPTO
- Fabricated end 2008 and thinned down to 120 µm
- Yield from 80 to 90% depending on quality required

300 um

Beam test setup

- 2009 & 2010 campaigns at CERN SPS with 120 GeV π -
- Using IPHC DAS based on NI-PXI digital IO board \rightarrow event rate ~ kHz
- Operating at 80 MHz ($t_{r.o.}$ = 115 µs) and T=20 °C (80 Mbits/s @ output)

Thresholding strategy validation

- With typical threshold ~6 x noise
 - Effi ~ 99.5 %, fake ~ 10⁻⁴ hits/pixel, $\sigma_{\rm s.p.}$ ~ 3.5 $\mu{\rm m}$
- Used in EUDET telescope since summer 2009

High resistivity (HR) epitaxial layer

- In standard CMOS process:
 - Epitaxial layer P-doped $O(10^{15})$ atom/cm³ \rightarrow resistivity ~10 Ohm.cm
 - charges drift thermally
- Newly available low-doped O(10¹³) atom/cm³ epitaxial layer
 - increases the resistivity \gg 100 Ohm.cm \rightarrow deeper depletion (still largely incomplete)
 - Note: depletion level depends on diode voltage
- Expected shorter collection time & more focused
 - \rightarrow better non-ionizing radiation tolerance
 - \rightarrow larger signal-over-noise ratio on single pixel
 - \rightarrow better resolution ?

Better TC performances

Final final TC = MIMOSA 26-AHR

- Process AMS 0.35 µm OPTO with 400 Ohm.cm resistivity epi. layer
- Exact same layout / MIMOSA 26
- Fabricated in 2009 with 3 composite epi.: 10, 15 & 20 µm thick
- Yield at least as good as std. Epi. layer
- Thinned down to 50 µm

Characterization

- Operating @ t_{r.o} = 115 μs and T=20 °C
- Test in lab with Ru source (MIP-like β)
 S/N x 1.5 to 2 from std to HR epi. (depending on epi. thickness)
- Beam test in summer 2010 with 120 GeV π^-
- Irradiated sensors at
 - 150, 300, 500, 1000 kRad
 - 3., 6., 10., 30. $10^{12} n_{eq}^{2}/cm^{2}$

The final JRA1-TC and successors, EUDET annual meeting 2010

Pixel multiplicity in hit at fake rate 10-5 hit/pixel

Better TC performances

Resolution vs pixel multiplicity

- After irradiation at 1.10¹³ n_{eg}/cm²
 - Test at 0 °C

<u>Note:</u> overall shift of $.5 \ \mu m$ in resolution (alignment)

IDC / MIMOSA 22-AHR

- Process AMS 0.35 µm OPTO with 400 Ohm.cm resistivity
- Same global geometry / MIMOSA 22
 - 128 columns x 578 rows
- Fabricated 2010 with 3 epi: 10, 15 & 20 µm thick
- New pixel designs
 - Different amplification schemes & diode biasing
 - Different pitch 18.4, 20.7 µm & rectangular pixels
- Irradiated sensors at
 - 150 kRad
 - 3. and 6.10¹² neq/cm²
 - Combined 150 Krad+3.10¹² n_{eq} /cm²
- → Operation t_{r.o.}= 92.5 µs (80 MHz), T=20 °C
- Beam test in late summer 2010 with 120 GeV π^-

Improvements observed

- Lower fake hit rate achievable @ ~100% efficiency below 1 hit/frame on the full matrix
- Spatial resolution reaches 3µm: -0.5 µm with same pixel pitch
- Performances stability with irradiation under study

Facilities

- Several telescope replications (ATLAS)
- Mass spectrometry (Bristol)

Vertex detectors

- FIRST @ GSI: hadrontherapy
 - low energy fixed target collisions
 - Doubly diff. Xsections measurement for carbon
 - data taking in summer 2011
 - With INFN (E.Spiriti)

PLUME Pixelated Ladder with Ultra-low Material Embedding (Bristol U., DESY, IHC, Oxford U.)

Telescope facility

- 🔶 AIDA
 - Larger surface 5x5 cm2
 - Timestamping

Vertex detectors

- STAR @ RHIC: heavy ion collisions
 - With LBNL
 - ULTIMATE sensor ~2x2 cm² @ t_{ro} ~ 200 µs

0.37 % X0/ladde

- Single material budget ~0.3% X0
- Submission 2010, first data by 2012-13
- CBM @ SIS: heavy ion collisions
 - With IK-Frankfurt
 - MIMOSIS sensor, $t_{r.o.} \le 10 \mu s$, $\sigma_{s.p.} \le 5 \mu m$
 - Rad. tol. required ~MRad and $\geq 10^{13} n_{eq}/cm^2$
 - SIS100 running in 2016, SIS300 for 2020

Calorimetry

8 cm radius

2.5 cm radius

Inner layer Outer laver

- ALICE @ LHC: heavy ion collisions
 - FOrward CALorimeter project with NIKHEV & Bergen
 - W+Si compact sandwich < 80cm
 - 50 m² cumulated sensitive area !
 - 100 μm pitch, t_{r.o.} < 50 μs
 - Prototype in ALICE: 2011 (using STAR sensor)
 - Final installation: 2016

Development path

- Benefited from the quick turn-over of the CMOS technology
- Demonstrator Chip version in 2007, a final TC version in 2008, -94 and improved final TC version in 2010 (thanks to the additional EUDET year)

Final performances of the TC

- Efficiency \geq 99.8% for a fake rate \leq 10⁻⁶ hit/pixel/frame
- Single point resolution ~3.5µm
- Manage 10⁴ frames/s and 10⁶ hits/cm²/s
- Performances unaltered after at least 150 kRad and 3.10¹² n_{ed}/cm²

Promises for future applications

- TC readily usable for a number of experiments (2011)
- Evolution of TC (sensitive area, readout speed, radiation tolerance) will pave the way to more demanding experiments for 2013 and beyond