G.-F. Dalla Betta

SiLC Meeting, Paris, January 26, 2010

INFN

Status of the development of 3D and active-edge sensors in Trento

Gian-Franco Dalla Betta

INFN and University of Trento Via Sommarive, 14 I-38123 Povo di Trento (TN), Italy dallabe@disi.unitn.it

Work supported by PAT, INFN CSN V, projects TREDI (2005-2008) and TRIDEAS (2009-2011), and INFN CSN I, project ATLAS

G.-F. Dalla Betta

SiLC Meeting, Paris, January 26, 2010

- Introduction and background
- Highlights from activities in 2009
 - Tests of 3D-DDTC detectors
 - New designs and simulations
- Plans for 2010:
 - Batch schedule

SiLC Meeting, Paris, January 26, 2010

3D detectors - State of the Art

First proposed by S. Parker et. al. in NIMA 395 (1997), 328

Best result: 66% of the original signal after 8.8x10¹⁵ cm⁻² 1-MeV n_{eq.} fluence

Da Via et. al. NIMA 604 (2009) 504

ADVANTAGES:

- Electrode distance and active substrate thickness decoupled:

- Low depletion voltage
- Short Collection distance/time
- Smaller trapping probability after irradiation

→ high radiation hardness

-Active edges:

- Dead area reduced up to a few microns from the edge

DISADVANTAGES:

- Non uniform response due to electrodes
- Higher capacitance with respect to planar
- Complicated and expensive technology

FBK/INFN/PAT agreement (since 2004) and CSN5 projects (since 2005)

Università degli Studi SiLC Meeting, Paris, January 26, 2010 G.-F. Dalla Betta INFN **3D-DDTC detectors** di Trento Front side as in STC d L. I. т t d Back side: + litho and DRIE Simulation domain

- Detector concept able to ease the fabrication process
- Expected to have performance comparable to standard 3D detectors
 (if d is much smaller than t) [G.F. Dalla Betta et al., 2007 IEEE NSS]

G.-F. Dalla Betta

SiLC Meeting, Paris, January 26, 2010

MIP simulations

Transient signals of a 250- μ m thick, 3D detector @ lateral full depletion voltage in response to a mip (hitting close to ohmic column) for different column geometries Output signals with semigaussian CR-(RC)³ shaper at t_p=20ns

3D-DDTC much better than 3D-STC, and almost as good as standard 3D

G.-F. Dalla Betta

SiLC Meeting, Paris, January 26, 2010

3D-DDTC batches

Batch	3D-DTC-1	3D-DTC-2	3D-DTC-2b
Substrate type	n-type	p-type	p-type
Substrate thickness (µm)	300	200	200
Junction column depth (µm)	190	110	160-170
Ohmic column depth (µm)	160	190	190
Completed by	October 2007	July 2008	April 2009

• For 3D-DTC-1 and 3D-DTC-2,

DRIE etching performed as an external service @ IBS, France

• For 3D-DTC-3, process completely performed in house at FBK

G.-F. Dalla Betta

SiLC Meeting, Paris, January 26, 2010

3D-DTC-2: some pictures

SiLC Meeting, Paris, January 26, 2010

3D diodes: I-V and C-V curves

1

Depletion first proceeds first sideways, parallel to surface.

Lateral depletion ~ 3V

<u>2</u>

After lateral depletion an extra voltage is required to deplete the volume below the column

Full depletion not abrupt

SiLC Meeting, Paris, January 26, 2010

Signal dynamics: simulations

Simulated transient current signal of 3D detector from batch 3D-DTC-2 @ 16V in response to a mip (hitting close to ohmic column).

Synopsys TCAD

SiLC Meeting, Paris, January 26, 2010

Functional tests on Strip detectors

(University of Freiburg)

G.-F. Dalla Betta

SiLC Meeting, Paris, January 26, 2010

ATLAS pixel sensor design

G.-F. Dalla Betta

SiLC Meeting, Paris, January 26, 2010

ATLAS pixel capacitance

- Experimental values normalized to number of columns in ATLAS pixel designs
- The observed trend is very similar to what expected from TCAD simulations

Measurements performed on strip-like test structure featuring same layout options as ATLAS pixels.

G.-F. Dalla Betta

ATLAS pixel assemblies with FEI3

- Bump-bonding @ SELEX S.I. (Rome), Indium based technology
- Single Chips (18x160 pixels):
 - 22 from batch 3D-DTC-2
 - 20 from batch 3D-DTC-2B
- A subset of these sensors have been flip-chipped on ATLAS FEI3.

G.-F. Dalla Betta

SiLC Meeting, Paris, January 26, 2010

Experimental setup

- Electrical and noise tests
- Response to radioactive sources $\gamma : Am^{241}, Cd^{109}$ (self triggered) $\beta : Sr^{90}$ (triggered by scintillator)

- Lab. Tests made at INFN Genova and CERN
- Pixel test station based on ATLAS TurboDAQ system

G.-F. Dalla Betta

SiLC Meeting, Paris, January 26, 2010

Leakage current

G.-F. Dalla Betta

SiLC Meeting, Paris, January 26, 2010

Early breakdown problem in 3D-DTC-2B

G.-F. Dalla Betta

SiLC Meeting, Paris, January 26, 2010

Threshold and Noise

FE Tuned with Th=3.2ke- and

60 ToT @ 20ke-

Sensor type	Threshold (e-)	Noise (e-)
3D-2E	3200 ± 58.60	202.3 ± 8.96
3D-3E	3318 ± 42.02	206.6 ± 8.29
3D-4E	3284 ± 41.27	229.8 ± 9.87
Planar	3259 ± 42.96	181.1 ± 9.37

G.-F. Dalla Betta

SiLC Meeting, Paris, January 26, 2010

Noise and Capacitance

[G.F. Dalla Betta et al., 2009 IEEE NSS]

SiLC Meeting, Paris, January 26, 2010

Gamma source tests: Am²⁴¹

Spectrum as a sum over all pixel without any clustering

SiLC Meeting, Paris, January 26, 2010

Gamma source tests: Cd¹⁰⁹

Spectrum as a sum over all pixel without any clustering

G.-F. Dalla Betta

SiLC Meeting, Paris, January 26, 2010

Beta source tests

Sensor type	MPV clu.size.1 (ke-)	MPV clu.size 2 (ke-)
3D-2E (200 μm)	14.12 ±0.03	15.36 ± 0.05
3D-3E (200 μm)	14.07 ± 0.03	15.25 ± 0.02
3D-4E (200 μm)	14.07 ± 0.03	15.25 ± 0.03
Planar (250 μm)	17.19± 0.18	18.52± 0.06

G.-F. Dalla Betta

SiLC Meeting, Paris, January 26, 2010

May 2009 beam test at CERN

Next steps (1):

3D-DDTC+ "passing through columns"

- Modified 3D-DDTC technology approach, already proved on test structures of 250 µm thickness.
- No support wafer, allows for dual-readout pixel/strip sensors
- Allows for "slim-edge" detectors (ohmic fence termination)
- One batch under fabrication at FBK-irst

G.-F. Dalla Betta

| N F N

- Trench etching steps investigated on test wafers
- TCAD simulations for breakdown prediction
- Layout complete (p-on-n, mainly strips)
- External service at SINTEF for wafer bonding
- Ready to start ...

SiLC Meeting, Paris, January 26, 2010

p+

Simulations: breakdown voltage

- Sensors can be safely operated well above full depletion voltage
- Field-plate largely enhances breakdown voltage performance

2010: batch schedule at FBK

- 3D-DTC-3: n-on-p, 250-μm thick substrate, full 3D detectors (passing-through) columns.
 Under way, to be completed by April 2010
- 2) Planar active edge.
 - Started, 18 wafers with bonded support (made at SINTEF), to be completed by March 2010
- 3) 3D ATLAS IBL1 (full 3D with slim edge) and
 3D ATLAS IBL2 (full 3D with active edge)
 To start in February 2010, due by June/September 2010

Conclusions

- The development of 3D detector technologies at FBK-irst is proceeding with encouraging results.
- In 2009he first prototypes of ATLAS pixel sensors made with the 3D-DDTC approach and assembled with FEI3 read-out chips have shown good performance in terms of charge collection (to be validated after irradiation)
- Early breakdown problems have been observed after bumpbonding (still to be fully understood)
- 3D detectors with "passing through" columns and planar detectors with active edge are also being developed and will be available soon.