VTT's EDGELESS DETECTORS FOR EUDET Dr. Juha Kalliopuska

Business from technology

Outline

- · Facilities and process resources
- 3D detector process
- Edgeless detector prototypes on 6" wafers
 - Wafer layout, fabrication process
 - Different designs: p-on-n and n-on-n
- Strip detector characteristics review
- N-on-n medipix2 pixel detector design & characteristics
 - IV-curves
 - First X-ray image
- Study of edgeless detector response
 - TCAD simulation
 - X-ray tube response
 - Radiation source responses
- Summary

MICRONOVA CLEANROOMS

Main Cleanroom Characteristics

Total Area m ²	2 600
Cleanroom Classification	ISO 4ISO 6
(in clean bays)	(101000)
Temperature	21 °C ± 0,5 °C
Relative humidity	45 % ± 5%

Clean bay - Service chase type Ventilation based on filter fan units Raised perforated floor Subfab with technical support areas

Labs with built-in Cleanrooms

Micropackaging lab - dicing saws, wire bonding

SubTech lab - Ion implantation, CMP, backgrinder, wafer bonder

Process equipment is mainly for 150 mm wafer size, but some processes can be performed also on 200 mm wafers

Equipments

Furnace:

- oxidation, LTO, TEOS, Nitride, doped and undoped polysilicon
- 2 Centrotherm furnace stacks

Lithography:

- Contact aligners MA150 and MA6 (bottom side alignment), MA200
- E-beam writing Zeiss LEO 1560
- Step and Stamp Imprint Lithography Suss MicroTec NPS 300
- i-line stepper, Canon FPA 2500i3
- Resist/development tracks, Suss ACS 200 and AIO Duna 700

Dry etching

- Etchers for silicon oxide, nitride, metals LAM 4520/4420/9600
- Deep silicon etching Aviza Omega i2L and STS ASE
- Silicon oxide ICP etching STS AOE
- RIE Oxford 80Plus
- Plasma strippers (PRS 800/801), microwave asher (Aura 1000), wet ozone stripping

Ion Implantation

 Medium current, 200 keV, P, As, B – Eaton NV8200-P

Equipments

Sputtering: AlSi, Mo, TiW, Si - Provac LLS 801

PECVD: Silicon oxide and nitride, incl. TEOS-process

Electroplating:

 Ni, Cu, SnAg, SnPb and SnBi – RENA and homebuilt plating systems

Flip-chip bonding: 2 Suss MicroTec FC150 bonders

Dicing: Disco DFD 651 and Loadpoint uAce-352

Fusion wafer bonding: EVG 5201S and EV 801 (non-IC materials)

Backgrinding (wafer thinning): Strasbaugh 7AF

Polishing and planarization: Strasbaugh 6DS-SP

VTT's 3D DETECTORS

Pixel element of a strip detector

PROPERTIES

- GOOD SPATIAL RESOLUTION
- TUNABILITY OF THE VERTICAL DOPING PROFILES
- SMALL DEPLETION VOLTAGE
- LARGE AREA STRIP AND PIXEL DETECTORS DEMONSTRATED (~10 cm²)
- SAME TECHNOLOGY FOR VERTICAL I/O's & EDGELESS DETECTORS

Pixel of a 3D strip detector and X-ray image taken with a 3D detector coupled to the Medipix2

7.5e+3

1.2e+3

2e+2

EUDET EDGELESS DETECTORS on 6" (150 mm) WAFER

VTT's edgeless fabrication process

Handle wafer removal

Poly process

Edge implantation

3D PROCESSING WITH POLYSILICON FILLING

- Polysilicon filling of the trenches is a slow process for the n-type active edge
 - Almost 50% of the edgeless process equipment time in furnace (diff, poly, anneal)
- Significant bowing of 6" wafers due to the polysilicon growth (~0.5 mm)
 - Difficulties in lithography, planarization and ion implantation
- Wafers brittle due to the polysilicon growth -> increased possibility of wafer cracking
- Slow planarization process required
- Detector edge cracking after the support removal
- Physical inactive edge region ~5-10 μm

3D PROCESSING WITH ALTERNATIVE PROCESS

- No need for polysilicon filling, planarization and separate ICP dicing
- Fast process and no bowing of the wafer
- Detector edges sustain handling no edge cracking
- Physical inactive edge region <1 µm
- Requires non-planar lithography -> readiness available at VTT

DC-coupled strip desings & n-on-n layout

Edgeless strip detectors

Strip leakage current: p-on-n implantation vs. poly

- Low leakage currents for both process approaches
- Very early breakdown voltages for poly filling
- Leakage current depends on the active edge distance

Characteristics of 150 um thick edgeless strip detectors

Edge distance	20 µm		50 µm		100 µm	
polarity	p-on-n	n-on-n	p-on-n	n-on-n	p-on-n	n-on-n
Full depletion	~25 V	~13 V	~35 V	~16 V	>40 V	~25 V
voltage						
IV @ 40 V	50-59	118	58-68	116	66-70	117
(nA/cm ²)	00 00	110	00 00	110	0070	
CV @ 40 V	580-620	940-960	652-665	930-950	650-655	937-955
(pF/cm ²)	705 (edge) 855		593 (edge) 800		543 (edge)	805
Breakdown	~145 V	~75 V	~180 V	~90 V	>200 V	~95 V
voltage						

Medipix2 pixel desing & n-on-n layout

- Pixel pitch of 55 µm
- \bullet Active edge distances 20 and 50 μm
- UBM service available from subcontractor
- Own line for electroless plating under development

Flip-chip bonding to Medipix2

Leakage current

- Leakage currents of 90 nA/cm² and 88 nA/cm² for 20 μm and 50 μm active edge distances
- Full depletion at 5 V
- No breakdown below 70 V

First Medipix2 X-ray images with 50 µm detector

No correction

First Medipix2 X-ray images with 50 µm detector

Flat field corrected

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

Study of edgeless detector response

- N-on-n detector at -15 V bias
- Area ratios (vs. charge collection ratio):
 - 50 um: edge/third ~0.76 and second/third ~1.47
 - 20 um: edge/third ~0.28 and second/third ~1.13
- Even ratios between pixels at ~60 um active edge distance

Study of edgeless detector response

- X-ray tube:
 - 30 keV, 10 mA current and 2 mm AI filtering
 - Aquisition time 606 s
- Fe55:
 - ~6 keV X-rays, less than 100 μm range in Si (1/e ~30 μm)
 - Aquisition time 300 s
- Cd109:
 - ~22 keV X-rays (1/e ~1.3 mm)
 - Aquisition time 300 s
- Sr90:
 - ~560 keV electrons, 200 µm range in Si
 - Aquisition time 120 s

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

M7 detector corner response to Sr90 (e-)

20 µm

L6 detector corner response to Sr90 (e-)

24

350-380
320-350
290-320
260-290
230-260
200-230
170-200
140-170
110-140
80-110
50-80

M7 (50 um), 30 keV, ff-image, 606 s

M7 (50 um) Cd109 (22 keV)

M7 (50 um) sr90 (e-)

L6 (20 um) Sr90 (e-)

M7 (50 um) Fe55 (1/e ~30 um)

L6 (20 um) Fe55 (1/e ~30 um)

Detector Response summary

- Flat field image responses very close to the simulated area ratios
- Radiation source responses support the simulated model
- Uniform response could be obtained with 60 um edge distance for 150 um thick detector, *i.e.* edge distance/thickness ratio ~40%

	Edge distance	1st/3rd	2nd/3rd
Simulation	20 um	0,28	1,13
	50 um	0,76	1,47
ff-image	50 um	<i>0,82</i> ±0,08	<i>1,52</i> ±0,06
Cd109	50 um	<i>0,53</i> ±0,13	<i>1,60</i> ±0,27
Sr90	20 um	0,35±0,04	1,16±0,06
	50 um	<i>0,80</i> ±0,09	<i>1,3</i> 9±0,11
Fe55	20 um	0,04±0,03	2,06±1,18
	50 um	<i>0,18</i> ±0,09	<i>2,12</i> ±0,91

Summary

- First n-on-n edgeless pixel detector prototypes have been fabricated, packaged to the Medipix2 ROC and characterized with X-ray tube and radiation sources.
 - Leakage currents of 90 nA/cm² and 88 nA/cm² for 20 µm and 50 µm active edge distances
 - ➤ Full depletion at 5 V
 - ➢ No breakdown below 70 ∨
 - Response of the edge pixels depends dramatically on the active edge distance
 - > Detector geometry can be optimized to give uniform pixel response
- VTT has capability to produce and deliver edgeless and full 3D edgeless pixel detectors in 2-4 months.
 - Three edgeless prototype processes done (1 poly & 2 edge implantation)
 - Good understanding of the edgeless 3D process and non-planar lithography
 - Improved process started: includes AC-coupled FOXFET and PT detectors
- Further work in edgeless detectors: fabrication for different ROC designs, radiation hardness tests and beam tests.

VTT creates business from technology

VTT's process capabilities for advanced detectors

- Operator time 48-54% of the equipment time -> parallel batch processing
- Delivery time includes possible UBM process and handle wafer removal
- Add 1 month to the delivery time for the prototype process

	DC PIXEL (realized)	EDGELESS POLY (realized)	EDGELESS IMPLANTATION (realized)	NEW EDGELESS IMPLANTATION (estimate)	FULL 3D EDGELESS POLY (estimate)
PROCESS TIME (h)	118 (2-3 WEEKS)	511 (10-11 WEEKS)	305 (6-7 WEEKS)	246 (5 WEEKS)	356 (7-8 WEEKS)
PROCESS STEPS	72	118	119	109	152
BOTTLE NECKS (% OF THE PROCESS TIME)	LITHOGRAPHY 25% FURNACE 24%	FURNACE 46% DRY ETCH 13% PLANARIZATION 12 %	LITHOGRAPHY 23% FURNACE 20%	LITHOGRAPHY 22% FURNACE 20%	FURNACE 27% DRY ETCH 20%
DELIVERYTIME	1 MONTH	3-4 MONTHS	2-3 MONTHS	2 MONTHS	3 MONTHS

