

AIDA WP2 Common Software - The LC perspective -

Frank Gaede, DESY EUDET Annual Meeting DESY, September 29th, 2010

The AIDA project

Advanced European Infrastructures for Detectors at Accelerators

http://www.cern.ch/aida

- EU project in the 7th Framework program for research infrastructure in Europe
- AIDA addresses infrastructures required for the development of detectors for future particle physics experiments. In line with the European strategy for particle physics
 - sLHC, ILC/CLIC, neutrino facilities, B-factories
- project duration: 4 years
- start: Feb. 2011
- total budget: 8 MEUR

AIDA workpackages

WP#	Туре	Task Description		WP Leaders
1	MGT	Project m	anagement and communication	S. Stavrev (CERN)
			nagement and administration	L. Serin (CERN)
			ation and dissemination	
2	COORD		software tools	F. Gaede (DESY)
			on and communication	P. Mato (CERN)
			toolkit for HEP	
	00000		ction toolkit for HEP tronics and interconnection technology	
3	COORD		H-G Moser (DESY (MPG-MPP))	
		3.23D Interco	on and communication	V. Re (INFN-PV)
			IP blocks for HEP	
4	COORD		/ith industry	S. Stapnes (CERN)
-	COORD		P. Sharp (STFC)	
5	SUPP		on and Network Working Groups	,
5	SUFF	5.1 Test beam		I. Gregor (DESY)
6	SUPP		onal access CERN	H. Breuker (CERN)
•	0011		s and irradiation facilities	II. Diedkei (OLINI)
7	SUPP		onal access European irradiation facilities	M. Mikuz (JSI)
		7.1 Access to		
		7.2 Access to		
			KIT, Germany	
8	RTD	Improvem	ent and equipment of irradiation and beam lines	M. Moll (CERN)
		8.1 Coordination	on and communication	
		8.2 Test beam	s infrastructure at CERN and Frascati	
		8.3 Upgrade of	PS proton and neutron irradiation facilities at CERN	
			on of components and common database	
			rastructure for test beam and irradiation lines	
			on of combined beam tests and common DAQ	
9	RTD		Infrastructure for detector R&D	M. Vos (CSIC (IFIC))
			on and communication	V. Boudry (CNRS (IN2P3))
		9.2 Gaseous I	(11/2F3))	
			Pixel Detectors	
		9.4 Silicon Tra		
		9.5 Highly Gra	nular Calorimetry	

goal of WP2 – 'Common Software'

develop core software tools that are useful for the HEP community at large and in particular for the next big planned projects: sLHC and Linear Collider (ILC/CLIC)

Objectives

Task 2.1: Coordination and communication

- Monitor the progress of the work in the work package
- Coordinate and schedule the execution of the tasks and subtasks
- Prepare progress reports internal and on deliverables

Task 2.2: Geometry toolkit for HEP

- Allow the description of complex geometrical shapes, materials an sensitive detectors
- Provide interfaces to full simulation programs (Geant4), fast simulations, visualization tools and reconstruction algorithms
- Allow for the misalignment of detector components
- Provide an interface to calibration constants and conditions data

Task 2.3: Reconstruction toolkit for HEP

- Tracking toolkit based on best practice tracking and pattern recognition algorithms
- Provide alignment tools
- Allow for pile up of hadronic events
- Calorimeter reconstruction toolkit for highly granular calorimeters based on Particle Flow algorithms

partner involved from LC community

- task2: Geometry toolkit
 - CERN, LLR, DESY, STFC
- task leader: CERN
- task3: Reconstruction toolkit
- Tracking toolkit
 - DESY, OeAW
- Particle Flow Algorithms
 - UCam, CERN, LLR
- task leader: DESY

Deliverables for WP2

Deliverables

blue: responsible partner

6

Del no.	Description/title	Partners:	Delivery
D2.1.1	Project web infrastructure to document software packages		M3
D2.1.2	Central code repositories and other infrastructure required for the software development	CERN, DESY	M4
D2.2.1	Software design for geometry toolkit including the interfaces for the reconstruction toolkits	CERN, DESY,LLR,	M12
D2.2.2	Software toolkit for detector geometry, materials and detection technologies	UniGla, STFC	M38
D2.3.1	Software design for tracking toolkit	DESY, OeAW, KFKI	
D2.3.2	Software design for PFA tools	Ucam, LLR, CERN,	M12
D2.3.3	Design for handling the pile-up in sLHC	INFN, NTU, KFKI	M18
D2.3.4	Software toolkit with tracking algorithms	DESY, OeAW, KFKI	
D2.3.5	Particle Flow software tools	Ucam, LLR, CERN,	M38
D2.3.6	Alignment tools software tools	UniGla PU	M38
D2.3.7	Trigger simulation software tool	STFC U	M38

WP2 – Milestones

2010				Partners:		blue: responsible partner	
26p 24, 21	Milestone number ⁵⁹	Milestone name	ben ciar	Lead Delivery benefi- ciary Annex I ⁶⁰			Comments
UESΥ,	MS10	Running first prototype of the particle flow algorithm.		UCAM	M, LLR		Application to LC detector (Task 2.3)
Meeting, I	MS11	Running prototype of tracking toolkit including some algorithms		DESY,	OeAW		Application to ILD-TPC simulation (Task 2.2)
l Annual	MS12	Running prototype of the geometry toolkit		CERN,	DESY,LL	R	Application to ILD detector simulation (Task 2.2)
	MS13	Running prototype of the tracking code for the pile-up	Ι	NFN, N	NTU, KFI	<i< td=""><td>Application to sLHC simulation (Task 2.3)</td></i<>	Application to sLHC simulation (Task 2.3)
EUDE	MS14	Integration of tracking toolkit into LC software framework		DESY		14	Validation of physics performance (Task 2.3)
Jaede,	MS15	Application of PFA tools to sLHC detectors		UCAM	, LLR		Demonstration of concept (Task 2.3)
ס							

milestones chosen such, that integration w/ LC software is key ingredient

The LC perspective

- development of detector and framework independent software tools for geometry description and reconstruction fits nicely into current LC situation w/ three detector concept groups
- milestones include adaption to LC framework(s)
- •=> we keep doing what we planed to do anyhow and gain from AIDA :
 - (additional) manpower
 - community strengthening
 - need for proper software design !

a proposed strategy for AIDA WP2 (LC)

- different timescales with AIDA project and upcoming documents: CDR, DBD
 - implement and improve the needed tools now
 - GEAR, improved tracking, PFA, ...
 - start thinking about definition of 'abstract interfaces' now crucial for success -> we have to get it right !
 - further develop and improve the tools in the context of LC software with general application and interfaces in mind
- not everyone involved in AIDA only EU partners
 - keep up close communication and collaboration with international partners outside AIDA
 - everything we do for LC software within AIDA has to fit into the international context of the LC software

AIDA WP2 and LC test beam

- In EUDET we have successfully integrated the software requirements for the test beam communities with the activities for the full detector simulation and optimization
- also the LC activities in AIDA WP2 are mainly targeted at the detector concepts we will continues to tightly collaborate with the test beam groups
- e.g.:
- the new geometry system needs to address the requirments for test beam setups (as in GEAR)
- ideally integrate geometry and conditions data (validity time intervals)
- also alignment task (targeted at sLHC) should be of interest for the test beams

Summary

- AIDA WP2 Common Software
 - development of generic geometry and reconstruction software tools
 - important topics for LC software
 - integrate with existing software frameworks
 - keep tight collaboration between detector concept software tools and test beam frameworks