Digital processing and characterization plans of the 16-channel S-ALTRO demonstrator

People :

Luciano MusaS-Altro Specifications and ArchitecturePaul AspellCoordinator of demonstrator ASIC designMassimiliano De GaspariFront-end + ADCHugo França-SantosADCEduardo GarciaData Processing & Control

Presented at the : EUDET Annual Meeting 2010 September 29th-October 1st 2010

E. Garcia CERN

Demonstrator work flow

DP functions

Baseline Correction 1	Removes the systematic offsets that are introduced due to clock noise pickup and switching of the gating grid of the detector. A baseline memory is used for storage of baseline constants which are used for look-up table correction of the base line.
Digital Shaper	Compensates the distortion of the signal shape due to very long ion tails.
Baseline Correction 2	Reduces non-systematic low frequency baseline movements based on a moving average filter.
Zero Suppression	Removes samples that fall below a programmable threshold.

E. Garcia CERN

DP simulation results

> BC1 example test: rest of the filters are disabled.

BC1 example test: rest of the filters are disabled.

DP simulation results

DS example test: rest of the filters are disabled.

> BC2 example test: rest of the filters are disabled.

S-ALTRO Interface (based on ALTRO interface)

Level 1: Starts the data acquisition.

Level 2: Validates data from previous L1.

BD: 40 bit bidirectional bus; 20 bits address + 20 bit data. 80 Mbps readout.

CTRL: 6 bits.

Global Reset, Sampling and Readout clocks.

E. Garcia CERN

Demonstrator work flow

Conditions:Static AnalysisVDD = 1.5VSclk = 50MHzRdoclk = 90Mhz

Toggle probability: 0.3 Temperature: 25 C Voltage variation: 10% Signoff verification

Encounter Statistical Power Analysis:

- Average power (considered in rail analysis): **118.62 mW**
- Worst IR drop peak: 7.2 mV
- Max peak current: 19.856mA

E. Garcia CERN

Simulation

EUDET Annual Meeting, September 2010

E. Garcia CERN

Mixed-mode simulation

- <u>Objective</u>: simulation of the full chain.
- Possible using verilog AMS and verilog descriptions.
- This example uses a very simple digital processing (input 5 ADC counts).

Mixed-mode simulation

• Output from simvision: external sclk, detector current pulse, PASA outputs, ADC output

Readout of one S-ALTRO channel

Mixed-mode simulation

<u>Important issue</u>: check the synchronization between the ADC output and the DP input including corners.

- External sampling clock
- ADC output
- Digital block internal clock register
- ADC output
- Digital block internal clock register

Fast corner

Slow corner

Demonstrator work flow Memories **Interface** PASA **ADC** DP Import design to OA from CDB **PASA and ADC modifications for integration** ADC digital backend design. Synthesis, place & route. Simulation and all checks in OA. Design of the top level clock tree Floorplan, power routing & A/D isolation **Top level mixed-signal simulation** Aug/10 Submit to MPW Wafer production, Test board design Sep-Oct/10 Dec/10dicing and packaging **Characterization** E. Garcia CERN EUDET Annual Meeting, September 2010

MPW submission

- Internal run at CERN sharing the MPW with other 20 different projects.
- For the moment just few samples will be packaged for characterization. Possibility of purchase 400 S-ALTRO demonstrators. More samples are available from the non fully processed wafers (upon request).
- Package: Thin Quad Flat Pack (TQFP-176), with pin stubs spaced at a pitch of 0.5 mm. The package body dimensions are 24 x 24 x 1.4 mm. The cavity for the silicon die is 12 x 12 mm.

Demonstrator work flow Memories **Interface** PASA **ADC** DP Import design to OA from CDB **PASA and ADC modifications for integration** ADC digital backend design. Synthesis, place & route. Simulation and all checks in OA. Design of the top level clock tree Floorplan, power routing & A/D isolation **Top level mixed-signal simulation** Aug/10 Submit to MPW Wafer production, **Test board design** Sep-Oct/10 Dec/10dicing and packaging **Characterization** Jan-Feb/11 E. Garcia CERN EUDET Annual Meeting, September 2010

Characterization

- **PASA** (already characterized in a dedicated ASIC)
 - The S-ALTRO test channel will be used to test the functionality (programmable peaking time, gain) and measure the noise.
 - Check the power consumption with the other blocks disabled.

• ADC (already characterized in a dedicated ASIC)

- Test the functionality using a sinusoidal input in the test channel.
- Check the power consumption with the other blocks disabled.

PASA + ADC

- Test the functionality using the test channel.
- Measure the noise & compare with the PASA alone.
- Check the power consumption of the analog part.

Characterization

Digital Block

- Test of the digital functionality.
- Check the power consumption depending on the filter configuration and core power supply. PASA and ADC will be disabled.

PASA + ADC + Digital Block

- Test of the functionality of the full chain.
- Measure the Noise:
 - Study of the digital switching noise introduced in the analog sensitive part.
- Check the Power consumption
 - Normal mode.
 - Low power mode (some digital block disabled).
 - Power pulsing.