Front-end and integration of the 16-channel S-Altro Demonstrator

People:

Luciano Musa ... S-Altro Specifications and Architecture Paul Aspell ... Coordinator of demonstrator ASIC design. Massimiliano De Gaspari Front-end + ADC Hugo França-Santos ADC Eduardo Garcia Data Processing & Control

Presented at the : EUDET Annual Meeting 2010 DESY, Hamburg, September 29th - October 1st 2010

M. De Gaspari CERN

S-Altro architecture

Read-out of gaseous detectors with MWPC, GEM, Micromegas

M. De Gaspari CERN

S-Altro Demonstrator

Goal: Integration of a low-noise preamplifier/shaper, an ADC and digital signal processing in a single chip.

Process: IBM 130nm CMOS 8RFDM Metal stack 3-2-3

Cadence / VCAD Open Access (OA) design database
→ Import designs from the "old" CDB database and verify them

Tape-out:CERN MPW, cost \$2K/mm²

Preamplifier/Shaper

- Single-ended input, differential output
- **Programmability options:**
 - Polarity switch
 - Shutdown switch
 - Preamplifier enable
 - Gain control (2 bits: 12-27mV/fC)
 - Shaping time control (3 bits: 30-120ns)
 - Bias decay (analog)

Size: 1100um X 210um

Power: 8.4mW/channel

Supply: 1.5V

PASA: ESD protections

Each PASA has two input pads in parallel (only one bonded):

- Simple double diode protection scheme (Human Body Model)
- Structure with series resistor for enhanced protection (Charged Device Model)

Drawback: the series resistor adds noise to the input signal. PASA noise: 300e⁻ @ 10pF detector capacitance Expected noise increase (simulated): 20-30%

Pipeline ADC

10bit, optimized for 40MHz, 1.5V supply, 34mW power (without stage scaling), 0.7mm² area

M. De Gaspari CERN

Digital error correction (redundancy)

18 bits from the 9 ADC stages are reduced to a 10-bit output word.

The digital correction is clocked on the falling edge of the clock.

Delays (buffers) not shown

Digital error correction: verification

In order to run chip-level simulations, an analytical Verilog-AMS model has been written and verified for each block.

Arbitrary analog input waveform converted to digital simulated in Spectre (schematic, extracted parasitics, extreme corners and Monte Carlo) and in Verilog-AMS: results correct

M. De Gaspari CERN

Verilog-AMS model

Verilog-AMS model developed for the PASA and the ADC.

PASA: the model produces waveforms similar to the schematic simulations

ADC: the model was verified to produce the same results, with the same latency, as the schematic.

M. De Gaspari CERN

Bias circuitry (beta-multiplier)

The off-chip resistor is meant to adjust externally the power consumption of the ADC (useful for different sampling frequencies and to test power-pulsing) ADC prototype: 1 beta-multiplier per ADC + 1 off-chip resistor per ADC SAltro: 1 beta-multiplier + 1 off-chip resistor + the BiasReference signal is routed to all channels

M. De Gaspari CERN

Clocking scheme

Shown in red shading: part most sensitive to noise

M. De Gaspari CERN

Clock Tree: design

Buffer the clock to the 16 channels, deliver a delayed clock (typical: 600ps) to the digital block. Fully symmetrical structure (also in layout).

M. De Gaspari CERN

S-ALTRO Demonstrator Floorplan

\bigcap	Pad Pad Pad Pad Pad Pad	Pad Pad Pad Pad Pad Pad	Pad Pad Pad Pad Pad Pad	Pad Pad Pad	Pad	Pad Pad Pad Pad Pad Pad Pad Pad Pad	
Pad Pad Pad Pad	PASA 200umX1100um		ADC 500umX1500um	C. Mere			Pad Pad Pad
Pad Pad Pad Pad Pad Pad	PASA 200umX1100um		ADC 500umX1500um	Corr			Pad Pad Pad Pad
Pad Pad Pad	PASA 200umX1100um		ADC 500umX1500um	Core		Digital Signal Processing 1670um x 8050um	Pad Pad Pad
Pad Pad Pad Pad	PASA 200umX1100um		ADC 500umX1500um	, ver			Pad Pad Pad
Pad Pad Pad	PASA 200umX1100um		ADC 500umX1500um	, cre			Pad Pad Pad Pad Pad Pad
Pad Pad Pad	PASA 200umX1100um		ADC 500umX1500um	Jour C			Pad Pad Pad Pad Pad
Pad Pad Pad	PASA 200umX1100um	mn077	ADC 500umX1500um	Une			Pad Pad Pad Pad Pad
Pad Pad Pad Pad	PASA 200umX1100um	3000um x	ADC 500umX1500um	Univ	Tree		Pad Pad Pad
Pad Pad Pad Pad	PASA 200umX1100um	er Routing	ADC 500umX1500um	Low.	Clock		Pad Pad Pad
Pad Pad Pad	PASA 200umX1100um	Powe	ADC 500umX1500um	Core			Pad Pad Pad Pad
Pad Pad Pad	PASA 200umX1100um		ADC 500umX1500um	Unit			Pad Pad Pad Pad Pad Pad
Pad Pad Pad	PASA 200umX1100um		ADC 500umX1500um	Under			Pad Pad Pad Pad Pad Pad
Pad Pad Pad Pad	PASA 200umX1100um		ADC 500umX1500um	Unic	-		Pad Pad Pad
Pad Pad Pad	PASA 200umX1100um		ADC 500umX1500um	Unit			Pad Pad
Pad Pad Pad	PASA 200umX1100um		ADC 500umX1500um	Uner			Pad Pad Pad Pad
Pad Pad Pad Pad	PASA 200umX1100um		ADC 500umX1500um	Jore C			Pad Pad Pad

16-channels:					
PASA	210um X 1100um				
ADC	500um X 1500um				
Digital Signal Processing					
	1670um X 8050um				

The wide power routing ensures low IR power supply drop (10mV for the ADC)

Power domains

Power domains: PASA analog ADC analog ADC digital Digital core Digital Pads

Power supply decoupling capacitors: 600pF /channel PASA 600pF /channel ADC analog 40pF /channel ADC reference voltages 80pF/channel ADC digital

EUDET Annual Meeting, September 2010

M. De Gaspari CERN

Substrate partitioning with **BFMOAT**

BFMOAT: high resistivity (p⁻) substrate region, placed between different power domains to insulate them from each other.

The effective substrate resistance between adjacent regions depends on the width and perimeter of the BFMOAT layer.

NW/P+ guardrings on both sides of the BFMOAT implants.

M. De Gaspari CERN

Size: 5750um x 8560um (49.22mm²)

M. De Gaspari CERN

