

ATLAS Planar Sensors Preliminary Report

Vladyslav Libov, DESY Hamburg On behalf of PPS Testbeam Group

Jens Weingarten, M. Benoit, Ch. Gallrapp, M. George, S. Grinstein, Z. Janoska, J. Jentzsch, A. La Rosa, V. Libov, D. Muenstermann, G. Piacquadio, B. Ristic, I. Rubinskiy, A. Rummler, D. Sutherland, G. Troska, S. Tsiskaridze, P. Weigell, T. Wittig

EUDET Annual Meeting 2010, JRA1 Users Session

29 September 2010

Outline

- ATLAS Inner Detector & Insertable B-layer project
- ATLAS Planar Pixel Sensors
- July 2010 Testbeam @ CERN SPS
- Data reconstruction
- Preliminary results
- Summary & Outlook

ATLAS Pixel Detector & Insertable B-Layer

Why IBL?

- Tracking robustness
 - Restores efficiency in case of Pixel layers failure
- Luminosity effects
- Tracking precision
 - ▹ Improves sensitivity for signals involving b-jets, e.g. low mass SM Higgs in WH→b bbar
- Beam Pipe replacement
- Large Radiation Doses

Three technologies are considered for IBL (no decision yet)

Planar Sensor

- •current design is an n-inn planar sensor
- •silicon diode
- different designs under study (n-in-n; n-in-p)
 radiation hardness proven up to 2.4 . 10¹⁶ p/cm²
- •problem: HV might need to exceed 1000V

3D Silicon

- •Both electrode types are processed inside the detector bulk instead of being implanted on the wafer's surface.
- •Max. drift and depletion distance set by electrode spacing
- •Reduced collection time and depletion voltage
- Low charge sharing

CVD (Diamond)

- •Poly crystalline and single crystal
- •Low leakage current, low noise, low capacitance
- •Radiation hard material
- •Operation at room temperature possible
- •Drawback: 50% signal compared to silicon for same X₀, but better S/N ratio (no dark current)

Principle aim: study performance of three technologies in the same way and compare

FE-I3 Planar Pixel Sensors

- Pixel size: 50 x 400 μm
- Sensor consists of 18 * 160 pixels
- Pixel at column 0 and 17: 50 x 600 µm

July 2010 Testbeam @ CERN SPS Oslo Box Dortmund Box

~30M events taken

July 2010 Testbeam @ CERN SPS

Batch 2

DUT	BCN	DO6	DO3	MPP1	DO5	MPP2	DO8	DO9	D07
GA	3	С	А	5	В	6	Е	F	D
type	Trench etched	Gr shifted	Pxl shifted	Red. gr	Pxl segm.	Std gr	1E15 neutron s	5E15 neutron s	1E15 protons

Data reconstruction - clustering

- Sparse Clustering Algorithm vicinity criterion
- Hit position (Charge-weighted) Center of Gravity

Data reconstruction - tracking

- Track selection for alignment using correlation bands, no need to choose residuals
- Trackfit "analytical fitter"
- Nice gaussian residuals, $\sigma \sim 3\mu m$

"Unbiased" DUT residuals

- Tracks are extrapolated to DUT
- If there is a hit inside a radius of R, it's considered as matched
 D08 R = 300 μ

ToT spectra

• ToT = Time over Threshold, corresponds to charge collected from the pixel

Follows landau distribution as expected

ToT vs track position inside pixel

"Bias dots" clearly visible (not in BCN – as expected!)

ToT vs track position inside pixel

Irradiated samples behave differently

Charge Sharing Probability

Charge sharing higher at the edges as expected

Charge Sharing Probability

Irradiated samples show less charge sharing

Analysis with tbmon

- Charge collection plots
- Look similar to ones from EUTelescope (compare slide 13)

Plots: M. Benoit @ Planar Pixel Sensor Meeting, Munich, 16-17 September 2010

Analysis with tbmon – charge sharing, efficiency

Summary and Outlook

- Analysis of July 2010 testbeam data is in progress
- This talk: analysis entirely within EUTelescope
- Results agree to tbmon
- Next finish reconstruction of all data, prepare final plots
- Get ready for IBL testbeam in October 2010

Thanks a lot for Your attention!