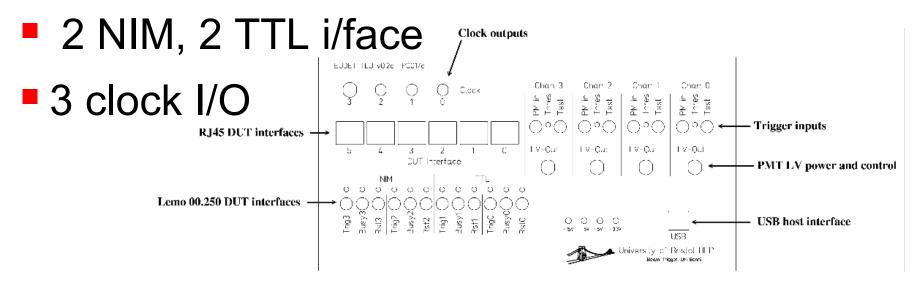


TLU Status and Plans

Outline


- Summary of EUDET TLU experience
- Remaining "issues"
- Wish-list
- Plans (AIDA).
- Conclusions.

Summary

- TLU v0.2c the last EUDET TLU model that will be produced.
 - 4 trigger inputs
 - 6 RJ45 DUT i/face


- TLU widely used:
 - DESY and CERN beam-test areas
 - In "users" labs to prepare for beam time.
 - ~ 15 units produced in total
- Hardware, Firmware, Software work reliably
 - Subject to suitable definition of reliable)
 - Still some remaining issues.

Remaining Issues

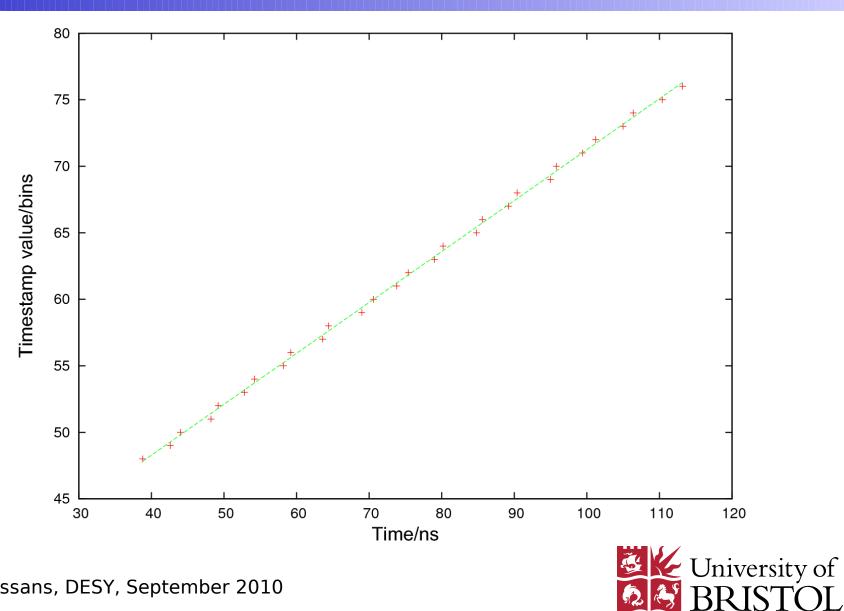
- Asynchronous logic still causing issues:
 - (Thanks to Artem Kravchenko@DESY for this report):

- * Blue TLU Trigger(NIM)
- * Yellow DUT Busy(NIM)

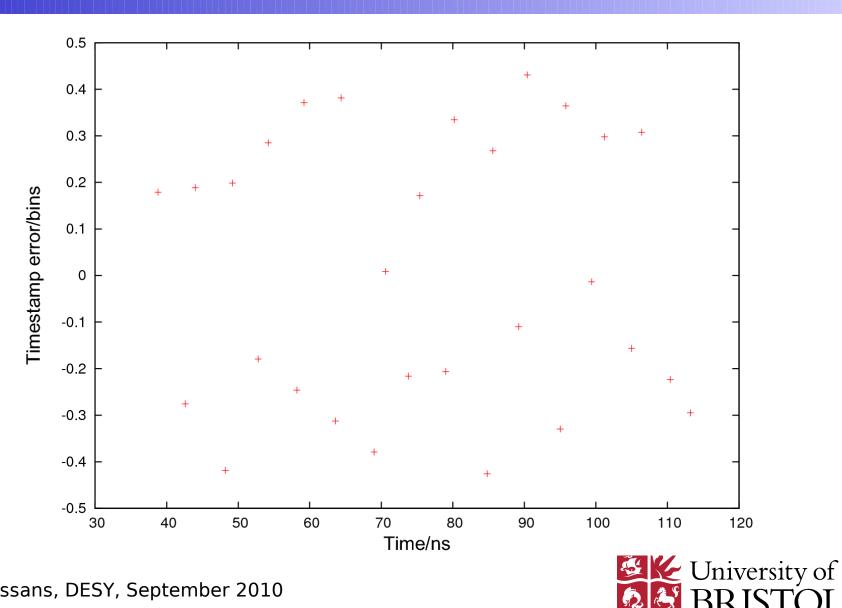
Trigger should stay asserted – not glitch low

Remaining Issues

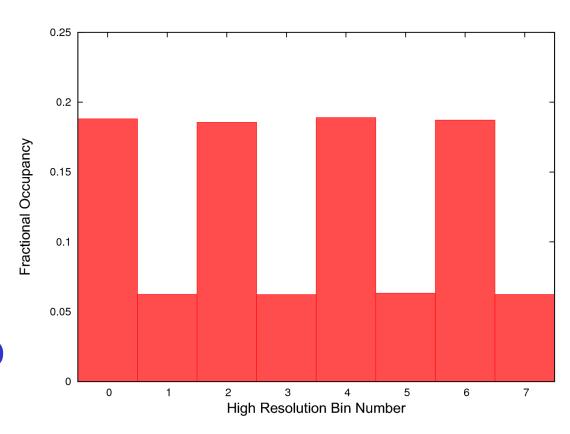
- Some features not fully implemented (or if implemented properly debugged).
 - Recording trigger information in timestamp.
 - Adjustment of PMT control voltage.
 - I2C control of clock.
 - Some units need jumpers changing on clock board.


Issues - Timestamps

- Optional "high resolution timestamp" mode in firmware (not compiled in by default). 2.6ns bins
 - With existing FPGA (Xilinx Spartan 3E) difficult to get accurate results
 - Use pulse generator with adjustable delay to measure timestamp vs. delay:



Timestamps vs. Delay


Timestamp Error vs. Delay

Timestamp - Bin Occupancy

- RandomTriggers
- Look at bottom 3 bits.
- 200MHz clk
 M/Space ratio
 not 50%

Pseudo Tagging Mode

- FORTIS DAQ continuously active.
 - DAQ reads out all data.
- FORTIS Readout f/ware modified to record every trigger that arrived.
 - Simple trigger/busy handshake used.
 (Trigger looped back to busy at FORTIS)

Pseudo Tagging Mode

- If data transfer to EUDAQ stalls, FORTIS DAQ buffers fill.
 - •FORTIS firmware modified to raise "DUT_Clock" line when buffer about to fill
 - •TLU firmware modified to veto triggers
 •selectable on DUT-by-DUT basis.
- Can be multiple triggers per frame.
- Could be applied to Mimosa readout.

Suggestions from users

- Extra trigger inputs (J. Velthuis)
- Zero dead-time (P. Colas et. al.)
 - Could be done with existing h/ware & new f/ware
- Timestamp every particle (M. Winter et. al.)
 - Could be done by firmware change on existing h/ware but would benefit from faster FPGA and link
- More TLUs
 - Implies cheaper easier to assemble TLU

Plans

- Base AIDA TLU around a newer CoTS FPGA board.
 - Probably Xilinx SP605 (Spartan 6)
 - Trigger logic clock 200MHz (cf. 50Mhz). Higher trigger throughput.
 - Use hardware "deserializers" to improve TDC
 - Use Gbit/s Ethernet as link to host.
 - Soft-core processor.
- Use work being done for CMS upgrade.
- e.g communication with host.

 David Cussans, DESY, September 2010

- "Full A-TLU" would look very similar to current model:
 - Six trigger inputs (cf. 4).
 - Fixed threshold discriminator with ADC to correct timing walk.
 - Lower latency (<10ns cf. ~ 25ns)
 - Keep RJ45 inputs (not an ideal connector, but keep compatibility with EUDET TLU)
 - Keep TTL, NIM I/O.
 - Front-end firmware very similar.

Plans

- "Mini TLU"
 - Use a prototype for new h/ware.
 - Use as lightweight TLU for users to integrate against.
 - Two trigger inputs.
 - Two RJ45 DUT I/O.
 - Single TTL DUT interface (Trigger, Busy, Clk)
 - Use new Xilinx sponsored "FMC" connector.
 - Interface identical to full TLU.

Conclusion

- EUDET TLU works.
 - Hardware seems to last if not abused (connectors are a weakness). One dead unit
- AIDA TLU same DUT interface to as EUDET TLU.
 - Reduce firmware development time.
 - Reduce s/ware development time.
 - Users won't have to change anything to swap from EUDET to AIDA TLU