Update on S0 Work in the Americas Region

Mark Champion 22 June 2010

Overall a very positive review

- The review committee was impressed with the progress on superconducting RF cavities. In particular, they were pleased to see that the TDP-1 yield goal of 50% at 35 MV/m has been achieved.
- The committee commended the excellent processing and testing results at Jefferson Lab and the increasing throughput and quality of results at the ANL/FNAL SCSPF and the FNAL VTS.
- They were interested in the plans to optimize and qualify vertical electropolishing and urged us to complete this work during the next year.
- Despite the progress and successes, there is concern about how we will manage to achieve the TDP-2 goal of 90% yield by the end of 2012. We proposed one pathway towards this goal is the development of nine-cell hydro-forming. The response was positive, and I think they will endorse this proposal in their report, which is due in about one month.

The review agenda and presentations can be obtained here:

<u>http://ilcagenda.linearcollider.org/conferenceOtherViews.py?view=standard&confld=4571</u>

	Tesla-shape nine-cell cavit	ies		Proceeding with purchase of	
	Description	No. Cavities	Status	•	
	AES 1-4	4	tested	40 cavities using ARRA	
	AES 5-10	6	tested	(economic stimulus) funds.	
	AES 11-16	6	due June 2010		
\Rightarrow	AES 17-36	20	Planned deliveries: 10	in Apr-Jun 2011, 10 in Mar-May 2012	
	Accel 6-9	4	tested		
	Accel 10-17	8	tested		
	Accel 18-29	12	testing in progress		
	Jlab fine-grain 1-2	2	fabrication complete; t	esting in progress	
	Niowave-Roark 1-6	6	First two received; bala	ance due summer 2010	
\Rightarrow	Niowave-Roark 7-16	10	Planned deliveries: 3 in	n Jun 2011, 3 in Mar 2012; 4 in Dec 2012	
\Rightarrow	Pavac 1-10	10	Planned deliveries: 3 in	n Jun 2011, 3 in Mar 2012; 4 in Dec 2012	
	Total	88			
	Already Received	38			
	Tesla-shape single-cell cavities				
	Description	No. Cavities	Status		
	AES 1-6	6	tested for vendor qualit	ested for vendor qualification; currently used for R&D	
	Accel 1-6	6	tested for vendor qualit	ication; currently used for R&D	
	Niowave-Roark 1-6	6	tested for vendor qualification; currently used for R&D		
	Pavac 1-6	6	First three received; ba	alance due summer 2010	
	Total	24			
	Already Received	21			

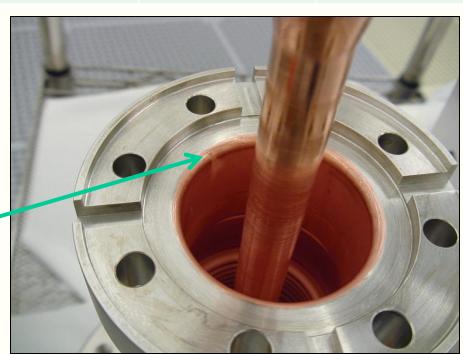
2010 Summary Data

- 24 cavity test preparations completed January-May 2010
 - 10 one-cell preps
 - 9 nine-cell vertical preps
 - 5 horizontal test preps
- 6 bulk EP
- 11 light EP
- 68 HPR cycles

Resultant Test Highlights

- Highest Gradient 9-cell (rinsed and assembled only): TB9AES007 41.8 MV/m (processed/tested at JLab – test results in agreement)
- Highest Gradient w-ANL EP and w/o FE: TB9RI029 34.6 MV/m
- Latest Horizontal test TB9AES009 was FE-free at 35 MV/m
 - TB9ACC008 FE-free up to 32 MV/m
- 20+ single-cell processes FE-free in a row—up to 42 MV/m
- Multiple 30+MV/m 9-cell processed through SCSPF

Presented at ART review

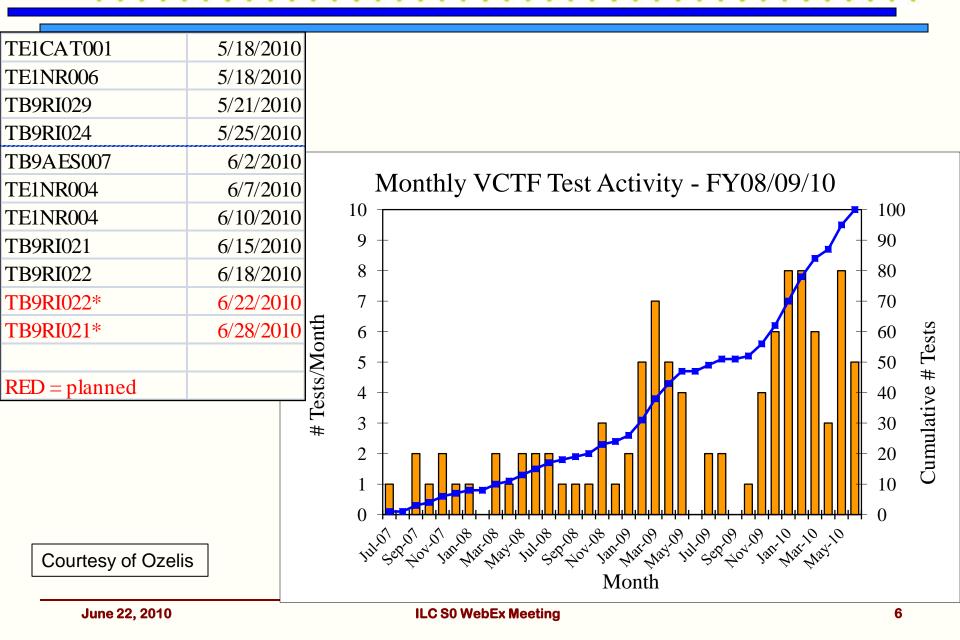


time

Cavity	Max gradient	Q ₀	Field Emission	Destination
TB9AES004	31 MV/m	1.1 x 10 ¹⁰	Very little	S1-Global CM
TB9ACC013	>35 MV/m	1.2x 10 ¹⁰	Heavy*	CM2
TB9AES009	35 MV/m	0.7 x 10 ¹⁰	None	CM2
TB9ACC008	32 MV/m	tbd (in progress)	None	tbd

*FE brought about by breakdown in the input coupler at ~37 MV/m ---prior to this event TB9ACC013 was FEfree

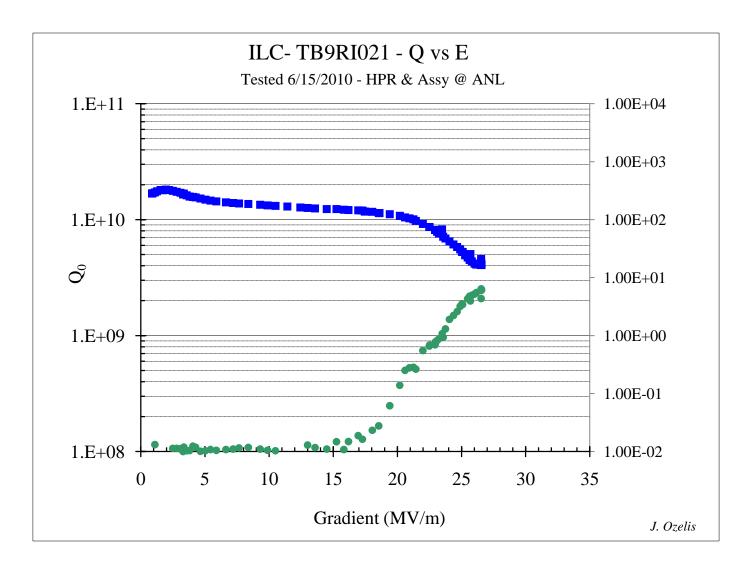
Void in Cu plating + • "vapor trail"


Courtesy of Hocker

Nine cavity tests at Fermilab since our last meeting

ilr

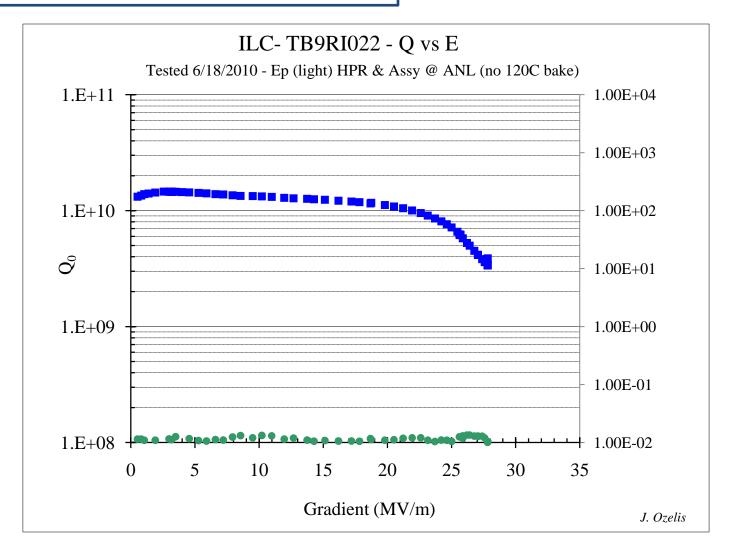
İİL



TB9RI021

- Bulk EP (133 microns) performed by RI
- Optical inspection at Fermilab
- 800 deg C de-gas at Jefferson Lab
- Light EP (25 microns) at Argonne
- Test at Fermilab

TB9RI022


- Bulk EP (153 microns) performed by RI
- Optical inspection at Fermilab
- 800 deg C de-gas at Jefferson Lab
- Light EP (22 microns) at Argonne
- Test at Fermilab

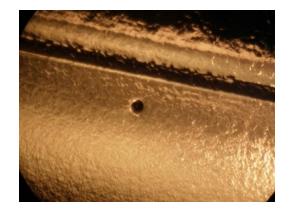
Limited by FE (RF power). $E_{max} = 26.6 \text{ MV/m}, Q_0 (@ E_{max}) = 4 \times 10^9$

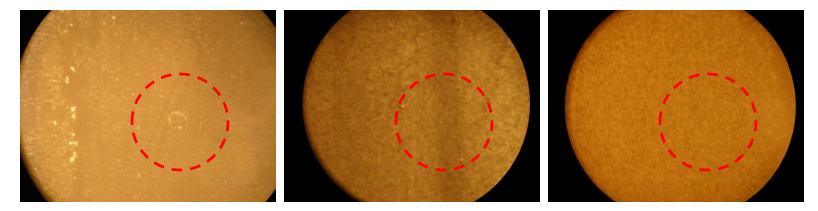
Courtesy of Ozelis

- Did not open vacuum valve on vertical test stand.
- Next step: open valve and verify cavity performance.
- If no FE, then perform 120 deg C bake and repeat test.

Limited by Q-drop (RF power). $E_{max} = 27.8 \text{ MV/m}$, $Q_0 (@ E_{max}) = 3.4 \times 10^9$

Courtesy of Ozelis


Cornell SRF Cavity Tumbler Rev I


Cornell

SRF

Strengthened machine. Approximate removal rate when one cell is tumbled is 15 µm per day.

AES5 Cell#3 pit defect after Jlab Electropolish. This is the only cell to be tumbled.

After first tumbling (-44 μm)After second tumbling (-34 μm)After third tumbling (-44 μm)Notes: 1. Total removal by tumbling: 122 μm2. Only ultrasonic cleaning before photos were taken / no etching

ACrawford 22jun10

Cornell SRF

Cornell SRF ILC Cavity VEP Plan (jun10-sep10)

- AES5 (Pit defect in equator weld heat affected zone of cell #3)
 - Tumble cell #3
 - VEP

- Cold electrolyte / No HNO3 / Minimize disturbance to dielectric layer

- A9 (26 MV/m E_{acc} quench in cell #1, no visible defect)
 - Tumble cell # 1
 - VEP

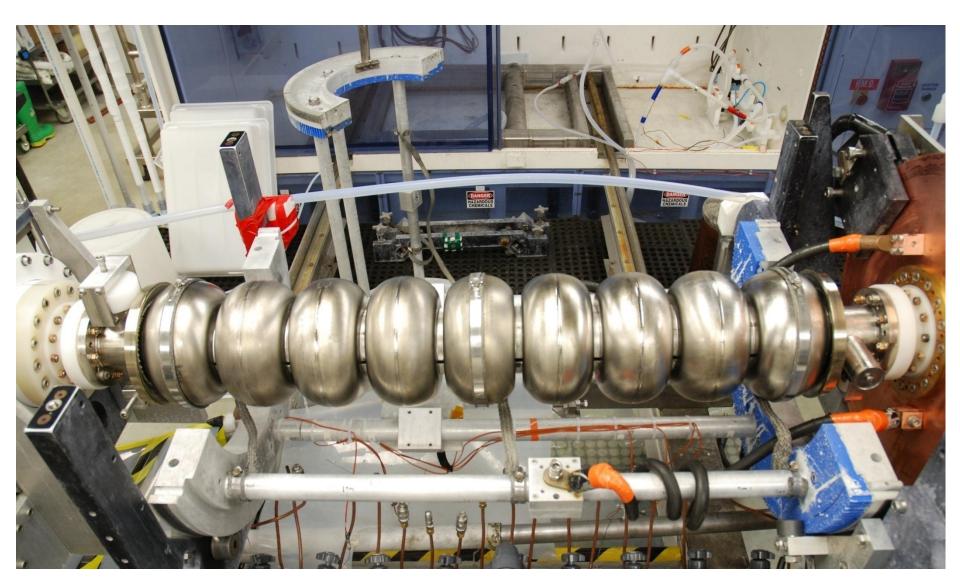
- Cold electrolyte / No HNO3 / Minimize disturbance to dielectric layer

• A10 (Low initial Q_0 , Low onset of FE, Damage to iris from HPR spray head?)

- Tumble whole cavity
- VEP

- Cold electrolyte / No HNO3 / Minimize disturbance to dielectric layer

• VEP treatment of two new AES cavities. Expected availability jul2010


JLab Update

Rongli Geng ILC Cavity Group Meeting June 22, 2010

Two New RI Cavities Qualified Eacc > 35 MV/m @ Q0 > 8E8

- RI18 reached 39 MV/m @ Q0 8.2E9 after second light EP
 - Cavity reached 33 MV/m after first light EP, limited by Q-slope (electrolyte contaminated by water)
 - Cavity will be shipped back to FNAL for CM2
- RI19 reached 38 MV/m @ Q0 8.8E9 after first light EP
 - Cavity appeared to be limited by quench
 - But lots of X-rays at highest field
 - Cavity has been re-HPR'ed and re-test this week
- Report by Grigory Eremeev later

ICHIRO7 Testing in Collaboration with KEK First EP successfully done at JLab June 18, 2010

