LS LFD compensation algorithm S1Global test at KEK

Proposal

Warren Schappert Yuriy Pischalnikov

Outline

- Objectives
- Brief Introduction to LS LFD algorithm
 application of LS LFD for CM2 cavities testing at FNAL/HTS.
- Proposed System (hardware) for LFD S1G test at KEK

Objectives

Brief Introduction to FNAL LFD Algorithm

STEP 1: Correcting the IF Signals

Examine IF signals for saturation

Decay of probe and reflected should be exponential

Cross-contamination of forward and reflected signals

Amplitude and phase variations of the forward power during the fill and flattop

Tails on forward power during the decay

Brief Introduction to FNAL LFD Algorithm

Step 2: Dynamic detuning

Extract the width and the dynamic detuning from the probe and forward IF signals

Scan Piezo bias (increment 1V) +/100V from resonance.

Brief Introduction to FNAL LFD Algorithm

STEP 3: Delay Scan

Excite piezo with a series of short pulses at various delays and measure the detuning

Brief Introduction to FNAL LFD Algorithm Response Matrix

STEP 4: Response Matrix/ Calculation of Compensation Pulse

Subtract the mean detuning to get response matrix

Invert the response matrix and determine combination of pulses needed to cancel out the mean using LS

Brief Introduction to FNAL LFD Algorithm Cavity ACCEL08 Eacc=30MV/m

Hardware

Hardware

