Adam Para July 6, 2010

A GLIMPS AT FTFP_BERT: HADRON INTERACTIONS IN GEANT4

Using GEANT4 to Evaluate High Resolution Hadron Calorimeter?

- We want to explore the limits of performance of dual readout calorimetry. Monte Carlo simulation is the only practically available tool.
- To explore high resolution calorimetry it is necessary that the Monte Carlo simulation conserves energy on the eventby-event basis with the accuracy better than the resolution of the calorimeter
- So far: QGSP_BERT is the only model which conserves energy event-by-event
- But the model is valid only at low energies. Other models are phased in somewhere around 10 GeV.
- Recent suggestion: FTFP_BERT. Use Bertini at low energies, switch to Fritjof above 5 GeV. Expectation is that Fritjof is a better model for interactions on nuclei
- Will illustrate FTFP_BERT performance for 50 GeV protons (1000 events)

Inelastic Processes Simulated

Collection of processes similar to QGSP_BERT. Need to find a good metric for comparison.
per event ~ 20 proton inelastic interactions, ~ 20 interactions of charged pions
~ 500 neutron captures per event → 4 GeV (8%) of energy recovered

High Energy Proton Interactions (Above 1 GeV)

Space-time Characteristics

primary protons and protons produced in pnucleus interactions. Notice the leading particle effect (good!)
All interactions very prompt, within 10 nsec
Interactions confined to a very narrow tube along the beam direction, few cm radius.

Spectra of Produced Particles

Typical spectra of hadron-nucleus interactions
protons (and even neutrons) have harder spectra than pions (leading quark effect)
huge number of very soft protons and neutrons (nuclear evaporation and spallation)

Nuclear Reactions

 Large energy transfers to a nucleus > large number of neutrons kicked out > broad spectrum of produced nuclids relatively infrequent fission with large surplus of neutrons released

Binding Energy Losses?

Lost energy, MeV vs N neutrons Nfrag=2

- At 'low' energies (below 10 GeV)
 - missing energy increases with the number of released neutrons (binding energy)
 - missing energy somewhat smaller (at the same number of neutrons) for fission events (fission energy release!)
- At 'high' energies (above 10 GeV)
 - not much correlation
 between the numbver of
 neutrons and the missing
 energy → non-conservation
 of energy
 Missing energy appears

Low Energy Neutron Interactions (below 100 MeV)

Space-Time Characteristics

most of neutron interactions at very low energies < 20 MeV
most interactions relatively prompt, within 100-200 nsec
interactions over large volume, both radially and along the shower axis

Nuclear Processes

• interactions of low energy neutrons with nuclei typically produce very few neutrons, most probably one and produce nuclids very close to the original nucleus

• Fission is very infrequent ~0.2 fission per event

Binding Energy Losses

Preliminary Impressions

- Most of the features/distributions look quite sensible
- Low energy behavior similar to QGSP_BERT (probably good)
- High energy model seems 'better' that those in the case of QGSP_BERT (smaller missing energy), albeit there is no correlation between the missing energy and number of neutrons
- It may be a better 'test case' for the dual readout calorimetry than QGSP_BERT
- Further studies necessary. In particular a comparison with CHIPS of interest
- Need to find a good metric for comparison of different models.