IR Beamline and Sync Radiation

Takashi Maruyama

Collimation

- No beam loss within 400 m of IP
- No sync radiations directly hitting the detector

 Spoilers SP2 and SP4 are set at the collimation depth.

Collimation studies

- Particle tracking and interaction simulation
 - Decay TURTLE
 - STRUCT
 - GEANT3
 - GEANT4
 - MuCarlo
 - MARS

SiD Forward Region

Pair background

- Beam-beam interaction generates ~75 K e+/e-/BX
- No material can be placed inside the pairs.
- Mask M1 contains the pairs and protects the detector from back splash.
- Want to place the vertex detector at R=1.4 cm.
- Want a hermetic detector to small polar angles.

Conventional sync radiation masks are not compatible with these requirements. Collimate the beam so that no sync radiations directly hit the detector .

14 mrad crossing geometry

Sync radiation from Soft Bend

Drozhdin

Soft Bend Sync Radiation

R (cm)

Quadrupole sync radiation and **Collimation depth**

- Find collimation settings at SP2 and SP4.
 - Track particles from QF1 to IP, while generating SR. Find Nx and Ny that generate SR hitting the detector. Collimation depth - $(n_x \sigma_x, n_y \sigma_y)$

Back track particles from IP to QF1.

Collimation Depth from Exit aperture

No. photons per e- - Exit aperture

Nx

Other apertures

BeamCal 1.5 cm

Nx

Nx

Collimation performance

- Set the collimators at (nx,ny) = (12, 71)
- Find # particles outside the collimation window.

Collimation performance depends on the halo model.

Beam Halo

Simulation finds 3×10⁻⁵ halo.
Burkhardt (PAC07)

Transverse beam profiles at the BDS entrance

Jlab beam halo is small.

Possible SR studies

- Assume a halo uniformly distributed over 1.5x collimation depth.
- Assume 10⁻³ halo (2×10⁷/BX)
- Find SR rate