# Requirements from LLRF on operational margin

### Shin MICHIZONO KEK

## LLRF control



- Various fluctuations are compensated by LLRF feedback system.
- Lorentz force detuning, microphonics, beam fluctuation and so on.

#### PkQl control

- In case of the Pk-Ql control near the quench limit condition, the values of Pks and Qls are calculated as followings.
- Select operational gradient of each cavity (Vcav)
- 2. Find out the Pk and Ql of each cavity under the specific beam current (Ibeam) and injection timing (Tinj).

$$\begin{split} & Igen = Ibeam \cdot exp\left(\frac{T_{inj}}{\tau}\right) \\ & V_{cav} = 2\frac{r}{Q}Q_{L}Igen \cdot (1 - exp\left(-\frac{T_{inj}}{\tau}\right)) \end{split} \qquad \Rightarrow Pk = \frac{1}{4}\frac{r}{Q}Q_{L}(Igen)^{2} \end{split}$$

#### Pk Ql control and conventional control



## RF configuration

|                         | Conventional                                             | Pk-Ql control                                         |
|-------------------------|----------------------------------------------------------|-------------------------------------------------------|
| QI                      | constant                                                 | Remote change depending on the beam current, gradient |
| RF distribution (Pk)    | constant                                                 | Remote change depending on the beam current, gradient |
| Flatness of each cavity | Flat only if the cavities are operated at same gradient. | Flat if Pk & Ql are changed.                          |
| comment                 |                                                          | Need study because of its complexity                  |

- Pk-Ql control is one of the candidate. (but rather complex and need more study.)
- If we know the cavity performance in advance, same gradient control of each rf unit is preferable.

## Operational margin

- We IIrf want to know
  - Operational gradient margin
  - flatness of each cavity (under vector sum)
- Concerning cavity gradient, the margin depends on
  - Availability
  - -Detunings of the cavities (microphonics)
  - Lorentz force detuning compensation (reliability of piezo and HV supply)
  - Beam current stability
  - LLRF operational gain (10? 100? 1000?) (The max gain comes from the total feedback loop)

## Operational margin (2)

- Operational gradient: Cavity > Cryomodule > ILC Cryomodule string
- Cavity: qunech limit
- Cyromodule: spread of gradient, gradient tilting
- ILC: Beam fluctuation, high reliability
- Need study (including operability) and simulation under KCS and DRFS configuration with Pk-Ql and conventional control.