ILC Cavity Performance Evaluation TDP/R&D plan (Rel-5) and BAW-1

Originally reported by C.M. Ginsburg On behalf of the ILC Database Group At SCRF WebEx meeting, June 20, 2010, and

> A few slides added by A.Yamamoto For SCRF WebEx Meeting July 28, 2010

2nd pass

Cavity

TB9ACC013

TB9ACC014

ACCEL7

TB9AES008

TB9AES00

Z143

TB9ACC01

TB9RI018

AC122

AC115

TB9RI019

TB9AES010

TB9ACC011

TB9AES009

TB9ACC012

AC150

Z139

AC124

ACCEL6

AC127

TB9AES006

Z141

TB9AES005

TB9ACC015

Z131

Z130

AC126

1

4

5 6

8

10

11

12

13

14

15

16

17

18

19

20

21

22 23

24

25

26

More plots for the document

Electropolished 9-cell cavities

More plots for the document

Electropolished 9-cell cavities

Comments on the plots

- In LCWS2010 plots, two cavity tests were mistakenly included in the 2nd pass plots which shouldn't have been
 - Z106 and AC149 had no surface treatment in between 1st and falsely-labeled 2nd passes
 - automation is an excellent thing
- For TDP/R&D plan release 5, three additional new cavities are included: TB9RI018 and TB9RI019 from JLab (1st and 2nd pass plots, but see note below), and AC146 from DESY (1st pass only)
 - 35 cavities for 1st pass, 27 cavities for 2nd pass
- Within the database group we are discussing how best to include one of the cavities (TB9RI018)
 - The standard EP process at JLab was known to have poor temperature stability, suspect water introduced in the acid mixture during mixing; Rongli specified "do not include"
 - "Do not include" normally means system limitation implies could not determine cavity limitation from test, and test to be repeated w/o additional surface preparation
 - If process was non-standard, the cavity would not be included in any plots
 - Problem in standard process, not new process
 - From R&D perspective, it is interesting to have the cause and effect of such a deviation from normal performance understood
 - From an earlier email exchange, I believe Rongli wants this cavity included in the plots
 - Opinion from the database group is mixed, and clearly Rongli's specific input is needed
 - Next steps
 - I changed the status in the database to "include" for the purposes of making the plots in this talk, then changed it back
 - The contributing institution specifies the "include" flag, therefore this requires Rongli's confirmation about the preferred specification of the cavity in the database

Further To Do List for BAW-1

- The key issues to address for the cavity performance evaluation are:
 - Reduction in the horizontal bin size, if justified by the gradient measurement error
 - Cavity performance tracks/changes from vertical test to horizontal test to cryomodule test in current data samples
 - Cavity performance evaluation to be extended to 3rd pass process, if a sufficiently useful data set become available
 - Radiation emission to be added as further quantitative evaluation of the cavity performance.
- The primary tasks planned for completion by September 2010 are:
 - To create a standard plot tracking cavity performance for new vendors if there are new data available.
 - To study Q₀ at the 31.5 MV/m operating gradient and Q₀ at the 35 MV/m vertical qualification gradient for data in the first- and second-pass data selections, for cavities which reach these gradients. This requires the adoption of a common algorithm to interpolate between measurements. As a later step, we will include this information in the ILC database.
 - To evaluate annual progress of the maximum field gradient, at least, at the first-pass evaluation, which can be widely and easily applied to cavity production in various projects (e.g. XFEL, Project-X) in a consistent fashion with the ILC R&D cavities.