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Overview

® Review of simulation work done ~< RDR
publication time by Glen.

@ Work continued by Javier with more up-to-
date design parameters.

® Beam-beam dynamics @ [P with different
parameter sets.

@ Feedback system components and specs.

@ Estimated performance from simulations.
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Luminosity Loss

® Luminosity lost through many ‘static’ and ‘dynamic’ effects causing beam
misalignment in magnetic components and at IP, emittance dilution and
bunch shape distortion.

® Naturally occurring ground motion
® Mechanical vibration sources

@ Wakefield effects in accelerating cavities and small apertures
(collimation systems).

® Most acute luminosity loss mechanism due to relative jitter of final focusing
magnet elements.

® Need mechanical stabilization at <1nm-level of magnets (difficult) or
active feedback based on beam trajectory after collision (baseline

design).
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Emittance Growth Constrained
by 5Hz Feedback

BPM readings in linac after 30 minutes ground motion

Emittance growth in linac

~100% after 30 min "KEK”"
ground motion = jitter for 10 seeds,
6% with feedback.
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% Max luminosity

SB2009 (lowP with trav focus)

IP Beam-Beam Dynamics
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GUINEA-PIG Simulations

@ IP vertical position feedback based
on beam-beam kick

@ “turn over” point of kick sets
desired dynamic range

@ SB2009 more sensitive

@ Vertical beam offset must be kept
<200pm for <5% lumi loss

@ SB2009 parameter set gives slightly
larger dynamic range for FFB system
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BDS Fast Feedback System

® 3 independent bunch-bunch beam-based FB systems in BDS:
® post-LINAC Fast Feeback

® 2 pairs of kickers/BPMs at different phases

@ Strong kickers (~100 times Voltage of other 2 FB kickers if
same type)

® Need ~100nm resolution on BPM’s

@ Corrects static & dynamic HOM-driven initial wiggle in train +
any other systematic intra-train effects.

® Separates BDS and LINAC 5-Hz feedback systems.

@ Not much simulation done with this, makes negligible
difference to luminosity performance with studies done if keep
gain low.
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BDS Fast Feedback System

® IP-ANGLE Fast Feedback
@ Corrects and optimises collision angle of bunches
® 3 1m Stripline kickers at IP phase at start of FFS with same drive
requirements as IP FFB.
® BPM 90° downstream.
® BPM res. Required ~ 2um (stripline)
3 If not at correct location, or if lattice errors present, cross-talk to IP-
POSITION FFB possible. Can mitigate by reducing gain or interleaving
3 IP-POSITION Fast Feedback
@ Based on beam-beam kick signal calculated with GP.
@ BPM just upstream of BeamCal, ~10um res required (stripline)
® Kicker in the ~1m gap between SDO and QF1.
@ Kick voltage requirements: 600 V/m for 70 sigma kick for 20 mrad
crossing or 3 kV/m for 2 mrad due to larger aperture.
® |IP FFB sets tolerance for 5-Hz feedback- must keep beam in IP FFB
dynamic range. Tail of beam-beam vs. offset curve goes out to 100’s of
nm, but prefer to be on left-side of peak for fastest convergence. For
nominal beam parameter set, this is ~100nm, most constricting is low Q
parameter set (~35nm).
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Luminosity-Feedback

« Lumi Feedback

— After some number of bunches (~150)

when effects like HOM's have damped
and beam-based FFB's have settled,
optimize IP collision parameters using

lumi-based signal.

- Require ?rompt signal from 1% layer of
BeamCal (integral of incident pairs).

which although not directly proportional to
lumi, are maximal at lumi max.

— Need to perform 2D scan in y,y’ space to ' O

find optimal collision parameters, 2 1D
scans doesn't give best performance.

— Variables are; size of 2D "pixel’ when
scanning and number of bunches to

average lumi signal over for each scan

point. These depend upon noise in lumi
signal and noise characteristics of
iIncoming beam

— Bunch-bunch system essential if optimal
collision parameters change pulse-pulse
(20% lumi-loss otherwise).
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GW (pre-RDR) Simulation

® 200-seed study, including tracking through
LINAC, BDS and IP. Using Placet, MatMerlin and
GUINEA-PIG.

® Study response and performance of FFB’s as
described given initially tuned beamline that
delivers target emittances and lumi. Then add
inter-pulse effects of GM (K model) + component
jitter including SR + LR WF’s in Linac cavities.

®TESLA beam parameters used in simulation with
Snowmass 2005 lattice (20 + 2mrad IP crossings).

Thursday, October 1, 2009



Simulation Results
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JRL Simulation

* Sliced bunches tracked along the LINAC * Macroparticle tracking
* Including long- and short-range transverse * Alignment survey errors
and longitudinal wakefield functions * Dynamic imperfections : GM
* Alignment survey errors * Collimator wakefields
* Dynamic imperfections: GM * Crab cavity wakefields
Placet

Guinea—-Pig

Input —|LINAC > |BDS > | Beam—Beam [—>Output

Possibility to apply BBA: FB
. 1-to-1 control loop

* DFS + PI controller algorithm embedded in Simulink (MATLAB)
* Alternatively, we have also implemented a similar Pl algorithm
using Octave (a free clone of MATLAB)
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Simulation Results
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®Banana effect negligible here

O[\/‘ean I_max — 920/0, Ltotal — 880/0

Thursday, October 1, 2009




20

15

10

B coll. wakelield
B 1o coll. wakefield

0.2 G beam jitter

Collimation depths: 9o, ; 65 o,

AL/L 0

.....

0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Collimator Wakefields

®Luminosity-loss
distribution from
100 simulated
seeds including
collimator
wakefield effects.
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Summary

® Integrated simula

tions of ILC from Linac through

to IP performed with static and dynamic effects

added.

® The use of 3 fast 1

‘eedbacks in the BDS as

described is adec

uate when used in conjunction

with a slower distributed FB to keep luminosity
>~90% of max achievable.

® This should be factored in to design when
considering emittance growth budgets for BDS.
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