## A Model for Industrialization

- Total numbers of SCRF 9-cell cavities required for ILC (Main Linac +Damping Ring + others)
  – 15,764
- A model for 9-cell cavity productions
  - 15,764 + spare + production back-up (~ 10%)
  - $\rightarrow \sim 18,000$  cavities / 4~ 5 years
- Possible models for manufacturing
  - Single consortium/vendor
  - Three regional consortiums/vendors
  - Six (or more) consortiums/vendors
    - < 3,000 > cavities / vendor
    - < 3 > cavities / day / vendor (assuming 5 yrs & 200 days/yr)

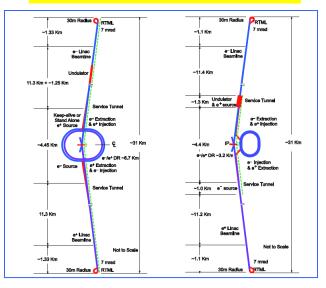
**Cavity Industlialization WS** 

#### **Industrialization Models**

- Global Vendors/Consortiums/Laboratories
  - **Research Instruments (ACCEL) and Zanon in Europe** —
  - **AES, Niowave/Roark, and PAVAC in Americas** \_
  - MHI, (Hitachi, Toshiba, and others) in Asia

| Production Models and Rate of SCRF Cavities |                                |                   |                                 |                                                                          |  |  |  |
|---------------------------------------------|--------------------------------|-------------------|---------------------------------|--------------------------------------------------------------------------|--|--|--|
| Project                                     | # of Cavities<br>assumed       | # of<br>Vendors   | Production<br>period<br>(years) | Production Rate:<br>(Cavities/day/vendor)<br>(at 200 ~ 250 work-days/yr) |  |  |  |
| SNS                                         | ~ 110<br>(including +20%)      | 1                 | 3                               | 0.2 ~0.15                                                                |  |  |  |
| XFEL                                        | (~640)                         | (1)<br>(2)        | (3)<br>(3)                      | (1.1 ~ 0.85)<br>(0.55 ~ 0.43)                                            |  |  |  |
| ILC                                         | (~ 18,000)<br>(including +10%) | (1)<br>(3)<br>(6) | (5)<br>(5)<br>(5)               | (18 ~ 14.4)<br>(6 ~ 4.8)<br>(3 ~ 2.4)                                    |  |  |  |

**Cavity Industlialization WS** 


# **Prepare for ILC-scale Industrialization**

- Learn from previous efforts and current status:
  - Industrialization study for TESLA (1990's)
  - Recent R&D progress (in ~ 10 years)
  - Current status in industries (in progress)
- Learn from industrialization of XFEL Project
- Encourage Laboratory / Industry partnerships
  - Realized in all 3 regions
    - Europe: XFEL, Americas: Venders manufacturing, Asia: A pilot plant at KEK
  - Prepare for cost-effective production and quality control in cooperation with industries
- Communication with Industries
  - 1st: Visit Venders (done in 2009)
  - 2nd: Workshop (done at IPAC-10 satellite meeting)
  - 3<sup>rd</sup>: Call for Response with a preliminary specification and cost estimate by industries

# **IC** SCRF-ML Technology Required

| <b>RDR Parameters</b> | Value                                        |  |  |  |  |
|-----------------------|----------------------------------------------|--|--|--|--|
| C.M. Energy           | 500 GeV                                      |  |  |  |  |
| Peak luminosity       | $2x10^{34}$ cm <sup>-2</sup> s <sup>-1</sup> |  |  |  |  |
| Beam Rep. rate        | 5 Hz                                         |  |  |  |  |
| Pulse time duration   | 1 m s                                        |  |  |  |  |
| Average beam current  | 9 mA (in pulse)                              |  |  |  |  |
| Av. field gradient    | 31.5 MV/m                                    |  |  |  |  |
| <b>#9-cell cavity</b> | 14,560                                       |  |  |  |  |
| # cryomodule          | 1,680                                        |  |  |  |  |
| # RF units            | 560                                          |  |  |  |  |









**Cavity Industlialization WS** 

#### **ii** Global Plan for SCRF R&D

| Year                                                      | 07                           | 200                                                                      | )8  | 20 | 09        | 20    | 010 | 2011                   | 2012 |
|-----------------------------------------------------------|------------------------------|--------------------------------------------------------------------------|-----|----|-----------|-------|-----|------------------------|------|
| Phase                                                     |                              | TDP-1                                                                    |     |    |           | TDP-2 |     |                        |      |
| Cavity Gradient in v. test to reach 35 MV/m               |                              | $\rightarrow$ Yield 50% $\rightarrow$                                    |     |    | Yield 90% |       |     |                        |      |
| Cavity-string to reach 31.5 MV/m, with one-<br>cryomodule |                              | Global effort for string<br>assembly and test<br>(DESY, FNAL, INFN, KEK) |     |    |           |       |     |                        |      |
| System Test with beam acceleration                        |                              |                                                                          | FL/ |    |           |       |     | IL (FNAL<br>start in 2 | ·    |
| Preparation for<br>Industrialization                      | Production Technology<br>R&D |                                                                          |     |    | ology     |       |     |                        |      |

#### Numbers of processes trade-off

iii.

|                                      | Yield<br>% | Fabrication<br>of<br>Dumb-bell<br>with EBW | Fabrication<br>of<br>End group<br>EBW                         | Assemble                                                     | Number of machines and<br>processes required |                  |                           |  |
|--------------------------------------|------------|--------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------|------------------|---------------------------|--|
|                                      |            |                                            |                                                               | 9-cell Cavity<br>With EBW                                    | EB<br>Weldin<br>g                            | Vertical<br>Test | Electro-<br>polishin<br>g |  |
| Case1                                | 100        | 1 seam /<br>welding                        |                                                               | one 2(4,8)-<br>cell / welding<br>cycle<br>(9 hrs/9<br>cycle) | 12                                           | 6                |                           |  |
| R&D<br>phase                         | 90         | cycle<br>(3 hrs/3<br>cycle)                | 1 seam /<br>welding<br>cycle<br>(11 hrs / 11<br>cycle)        |                                                              |                                              | 7                | 6                         |  |
| Case2<br>Current                     | 100        |                                            |                                                               | one 9-cell / 2<br>welding<br>cycle<br>(4.7 hrs / 2<br>cycle) | 8                                            | 6                | 6                         |  |
| prod.                                | 90         | 8 dumb-bell                                |                                                               |                                                              | $\rightarrow$ 7*                             | 7                | Ŭ                         |  |
| Case3<br>Mass<br>Production<br>Study | 100        | / welding<br>cycle                         | 8 end group /<br>welding<br>cycle<br>(46.7/8<br>hrs/11 cycle) |                                                              | 5<br>→ 4*                                    | 6                | 6                         |  |
|                                      | 90         | (6.5/8 hrs/3<br>cycle)                     |                                                               |                                                              |                                              | 7                |                           |  |

\* In case of common EBW machines