SR Study for ILC

M. Sullivan

Aug. 19, 2010

Outline

• Present status (as I understand it)

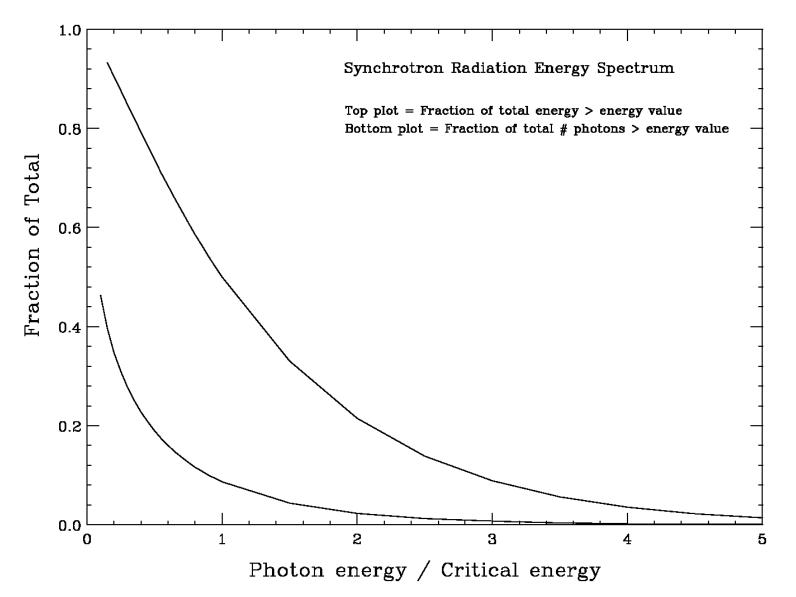
• Some general concerns

• Start up scenario?

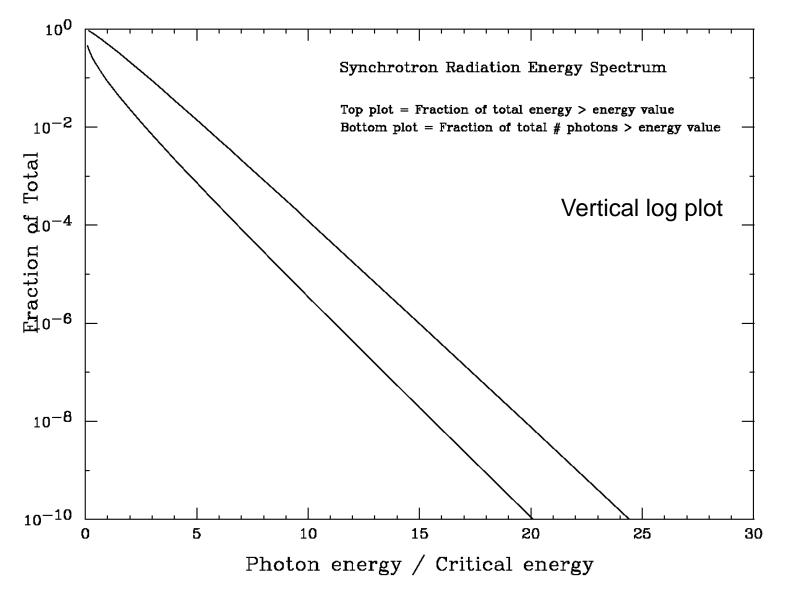
• What needs continued work

Present Status

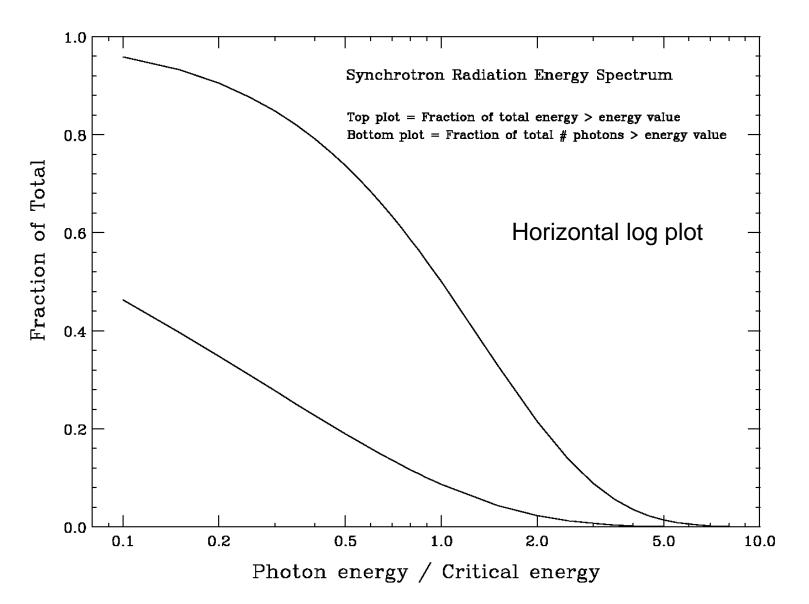
- Takashi-san has done a good deal of preliminary work
 - Looked at upstream photon sources
 - Primarily the final focus magnets
- Recent discovery that the lattice was changed in 2006
 - The last soft bend magnets are 5 times stronger
 - Perhaps this is still OK?
 - Collimator heating?


Present magnet strengths

- I find the following magnet strengths
 - -Name Number Location (m) Field (kG)
 - 90-160 – B1 0.1243 6 11 166-306 – B2 0.3445 0.4215 383-513 – B5 10 - BS1 0.2917 30 787-1194


Some Concerns

- At these beam energies:
 - What about out of plane radiation?
 - This goes as 1/γ and hence is very small for high beam energies, but there is a photon energy dependence (the lower the photon energy the larger the angle)
 - Probably not a problem
 - SR photon energy spectrum
 - At this beam energy, even low field magnets induce large critical energies. Even so, we still end up with a lot of low energy photons
 - We also get some very high energy photons in the tail


Synchrotron Radiation Energy Spectrum

Synchrotron Radiation Energy Spectrum

Synchrotron Radiation Energy Spectrum

Spectrum Numbers for reference

E/Etot	$\begin{array}{c} 0. \ 95916\\ 0. \ 95916\\ 0. \ 95916\\ 0. \ 97695\\ 0. \ 84850\\ 0. \ 84850\\ 0. \ 82011\\ 0. \ 82011\\ 0. \ 73695\\ 0. \ 73693\\ 0. \ 73693\\ 0. \ 73693\\ 0. \ 73693\\ 0. \ 73693\\ 0. \ 73693\\ 0. \ 73693\\ 0. \ 73693\\ 0. \ 73693\\ 0. \ 73693\\ 0. \ 73693\\ 0. \ 73693\\ 0. \ 73693\\ 0. \ 73693\\ 0. \ 73693\\ 0. \ 73693\\ 0. \ 73693\\ 0. \ 54179\\ 0. \ 563647\\ 0. \ 563647\\ 0. \ 563666\\ 0. \ 56375\\ 0. \ 56375\\ 0. \ 563666\\ 0. \ 56375\\ 0. \ 56375\\ 0. \ 563666\\ 0. \ 56375\\ 0. \ 56375\\ 0. \ 56670\\ 0. \ 56375\\ 0. \ 56670\\ 0. \ 56670\\ 0. \ 0. \ 56670\\ 0. \ 0. \ 56670\\ 0. \ 0. \ 56670\\ 0. \ 0. \ 0. \ 0. \ 0. \ 0. \ 0. \ 0.$
#gam/tot	$\begin{array}{c} 0.46283\\ 0.39719\\ 0.304929\\ 0.304929\\ 0.27754\\ 0.257546\\ 0.2555959\\ 0.257546\\ 0.257546\\ 0.257546\\ 0.257546\\ 0.257546\\ 0.2555959\\ 0.257546\\ 0.255596\\ 0.218960\\ 0.118960\\ 0.117392\\ 0.116546\\ 0.117392\\ 0.116546\\ 0.112583\\ 0.116546\\ 0.125833056\\ 0.125833056\\ 0.125936\\ 0.125936\\ 0.125936\\ 0.125936\\ 0.125936\\ 0.125936\\ 0.125936\\ 0.125936\\ 0.125936\\ 0.125936\\ 0.125936\\ 0.125936\\ 0.125936\\ 0.125906\\ 0.205610\\ 0.20$
ы	00000000000000000000000000000000000000

Start up Scenario?

- Do we need to worry about a startup scenario?
- What is the lowest reasonable luminosity the detector can use?
 - 10 times below design?
 - 100 times below design?
 - I can imagine a case where the design beam emittances have not yet been achieved however, it may be easier to pump up the current to try to increase the luminosity – especially if we are running at some lower center-of-mass energy
 - Z0?, Some light Higgs that LEP missed?
 - Higgs is 130 GeV?
 - t, tbar?

Startup scenarios (2)

- We should try to see if we can make the detector work when the collimators are more open and the beam profile is more flat
 - More difficult background-wise but if the design can do it then the detector could run for early physics
 - At least we should be able to find the edges of acceptability
 - We should also be able to indicate the level of background in the detector
 - Where the hits are and where background sensors should be added to insure detector safety
 - Hopefully can also see how far the collimators can be opened before trouble begins

Plan of effort

- First cross-check Takashi-san
 - Never hurts to make sure we both agree on the result (don't expect any surprises and this will also cross-check that I have set up the IR properly)
- Go further upstream and look at sources farther away
 - Also needed if we want to look at what happens if the collimators are opened
- Also check SR coming from tune up dump kickers
 - Should not be able to get down to the IR but may cause backgrounds if the critical energy high enough?

Effort (2)

- Try to get a handle on internal reflections of x-rays
 - Will have to do some research
 - Light source guys should know something about this
 - May not be a problem if the inside surface is rough enough?
 - Inside surfaces are usually shiny as witness borescope videos
 - But roughness may be an issue for other things?
- Check detector downstream surfaces and see where we start to get SR hits
 - There may be one bounce openings for the backscattered photons
 - Again if the collimators are opened when and where do things start to cause problems
- Whatever else hasn't yet been thought of.....