BAW1 Cavity Gradient Agenda

Rongli Geng August 24, 2010 26th ILC Cavity Group Meeting

BAW1 Organization and Goals

- Organized by ILC-GDE Project Managers:
 - Akira Yamamoto, Marc Ross, and Nick Walker
- Main Subjects:
 - Single-tunnel ML design and High Level RF System (Sept. 7 8)
 - Accelerator Field Gradient for SCRF Cavity (Sept. 9 10)
- Objectives and Goals:
 - Assessment of technical proposal in SB2009
 - R&D plan and goal in TDP-2
 - Impact across system interfaces, cost and schedule
 - Discussions toward consensus in GDE and Physics/Detector groups

PM's Charge for ILC Accelerator Gradient Topics

• Gradient improvement R&D:

- Material/fabrication, surface processing, instrumentation and repair
- Strategies to overcome 'quench', and 'field/radiation emission' and to maintain moderate cryogenic load
- Improvement of gradient and achievement of adequate yield
- Long-term and alternate approach for gradient improvement and for cost-reduction in industrialization
- Strategy for the ILC accelerator gradient
 - Concept of average accelerator gradient and spread
 - Overview and scope of 'production yield' progress and expectation for TDP including acceptable spread needed to achieve the specified average gradient
 - Specification of gradient, Q0, emitted radiation in vertical test including the spread and yield
 - Specification of gradient, cryogenic-load, and radiation in cryomodule test (without beam)
 - Specification of gradient, cryogenic load in accelerator operation (with beam)
 - Strategy to define and specify 'emitted radiation' (radiation that may result in increasing cryogenic-load and usable gradient)
 - Strategy for tuning and control, including feedback, control of 'Lorentz force detuning', tolerances and availability margin
 - Impact on other accelerator systems: CFS, HLRF, LLRF, cryogenics, and overall costs

ILC R&D Plan Release 5

The primary R&D goals for SCRF include:

ILC Research and Development Plan for the Technical Design Phase

Release 5

August 2010

ILC Global Design Effort Director: Barry Barish

Prepared by the Technical Design Phase Project Management

Project Managers:

Marc Ross Nick Walker Akira Yamamoto

- Cavity: The primary R&D goal remains the demonstration of a field gradient of \geq 35 MV/m at Q₀ = 8×10⁹ (operation at 31.5 MV/m at Q₀ = 10¹⁰) with a production yield of \geq 90%. (Designated as S0.) High-gradient R&D with single-cell and 9-cell cavities for R&D into: materials; mechanical forming; surface-preparation process; and vertical testing.
- Cavity-integration: Plug-compatible cavity-package design and integration including tuner, input-coupler, He-vessel and magnetic shield, and the cavity string test with an average field gradient of 31.5 MV/m in one cryomodule. Designated as S1 and S1global program. In parallel to the on-going effort on field gradient improvement,

Gradient Goal and Timeline

Table 4-1: Milestones for the SCRF R&D Programme

Stage	Subjects	Milestones to be achieved	Year
S0	9-cell cavity	35 MV/m, max., at $Q_0 \ge 8 \times 10^9$, with a production yield of 50% in TD PHASE 1, and 90% in TD PHASE 2 1). 2)	2010/
			2012
S1	Cavity-string	31.5 MV/m, on average, at $Q_0 \ge 10^{10}$, in one cryomodule, including a global effort	2010
S2	Cryomodule-string	31.5 MV/m, on average, with full-beam loading and acceleration	2012

1. The process yield of 50 % in TDP-1, in the R&D Plan (release 2), has been revised to be the production yield of 50 % in the TDP-1.

2. A quantitative evaluation of radiation emission is to be included in the milestone list in near future.

Gradient Progress Reported by Barry at ICHEP2010 Well Received by Community Now the challenge is 90% yield by 2012

1. Beam Power Challenge

- · Many critical technologies
 - Targets, collimators and dumps, materials, MPS, SCRF, ...

Tor Raubenheimer, ICHEP2010

- LHC beam will be ~350 MJ

 Beam collimation challenge!

 Metallic collimator to reduce Z_⊥
 SCRF → high power proton beams for a number of new applications:

 Neutrino beams
 Neutrino factory & Muon Collider
 Accelerator Driven Systems
 - Accelerator Driven Systems (sub-critical reactors) and transmutation of waste

Successful ILC Super Conducting RF developments in global collaboration

J.P.Delahaye, ICHEP2010

Questions

- Is 90% yield by 2012 a defendable goal given the limited available resources?
- By now, it is fairly established that yield drop near 20 MV/m is due to quench at highly localized sub-mm sized defect from fabrication and/or material, is it possible to realize <u>early defect detection</u> by optical or other means prior to "damage layer" chemistry – followed by effective defect removal?
- Are there any planned immediate changes in cavity fabrication behaviors of near future cavity procurements that may lead to improved results in the next two years?
- PM's list of discussion items cover broad topics but the time for discussion is rather limited. What should we be focused on so as to reach agreement?

Gradient Improvement Plan

Based on Recent Understanding due to Globally Coordinated S0 Program

- Highest priority is to push yield up near 20 MV/m – the yield drop due to local (geometrical) defects near equator weld.
 - Fab. QA/QC
 - Mechanical polish prior to heavy EP
 - Post-VT local targeted repair
 - Seamless cavity
 - Large-grain mat. From ingot slicing
 - Fine grain mat. Optimization
- Also high priority is to suppress field emission at high gradient (up to 42 MV/m) – and quantify its effect on cryogenic loss and dark current.

BAW1 Cavity Gradient Agenda Sept. 9

- Cavity Gradient R&D-1 (Convener: Hitoshi Hayano, KEK)
 - Technical address (Akira)
 - Overview of gradient R&D progress (Rongli)
 - ILC Cavity database progress (Camille)
- Cavity Gradient R&D-2 (Convener: Eiji Kako)
 - Regional R&D status & future plan: Europe (Sebastian)
 - Regional R&D status & future plan: Americas (Mark)
 - Regional R&D status & future plan: Asia (Hitoshi)

BAW1 Cavity Gradient Agenda Sept. 9 (cont.)

- Strategy for Cavity Gradient Improvement (Convener: Echard Elsen)
 - Near term R&D and improvement program in TDP-2
 - XFEL/HiGrade. Speaker:
 - Mechanical polishing. Speaker:
 - Repair methods. Speakers:
 - "destructible" R&D cavities. Speaker:
 - New vendor developments. Speakers:
 - Long term R&D and improvement scoping TeV collider
 - ACD shape cavities. Speakers:
 - Seamless cavities and Nb-Cu clad material cavities. Speakers:
 - Thin film coated cavities. Speakers:
 - R&D for lowering cost per MV/m
 - Large grain cavities, vertical EP, Bulk removal by BCP etc.
- R&D Plan and Discussion (Convener: Rongli Geng)
 - General discussions
 - Field emission induced radiation quantification
 - Summary and recommendations