Further To Do List for BAW-1

- The key issues to address for the cavity performance evaluation are:
 - Reduction in the horizontal bin size, if justified by the gradient measurement error
 - Work not yet done by Camille; error evaluation likely by BAW
 - Cavity performance tracks/changes from vertical test to horizontal test to cryomodule test in current data samples
 - Work in progress by Sebastian; first iteration by BAW
 - Cavity performance evaluation to be extended to 3rd pass process, if a sufficiently useful data set become available
 - no progress; current data set limited
 - Radiation emission to be added as further quantitative evaluation of the cavity performance.
 - Insufficient specification so far

Further To Do List for BAW-1

- The primary tasks planned for completion by September 2010 are:
 - To create a standard plot tracking cavity performance for new vendors if there are new data available.
 - No new data available
 - To study Q₀ at the 31.5 MV/m operating gradient and Q₀ at the 35 MV/m vertical qualification gradient for data in the first- and second-pass data selections, for cavities which reach these gradients. This requires the adoption of a common algorithm to interpolate between measurements. As a later step, we will include this information in the ILC database.
 - Algorithm specified by DESY DB group to be used: linear interpolation
 between neighboring points below and above
 - Data partially available; remainder likely by BAW
 - To evaluate annual progress of the maximum field gradient, at least, at the firstpass evaluation, which can be widely and easily applied to cavity production in various projects (e.g. XFEL, Project-X) in a consistent fashion with the ILC R&D cavities.
 - <u>To be completed by Camille by BAW</u>

BAW-1 Gradient Spread Items

- The question relates as to how cavities are 'accepted' during production:
 - A hard cut on gradient which all cavities for the machine must pass, OR
 - An allowable range (+/- XX%) which maintains the overall average but takes advantage of cavities performing better than average
- If the second is to be used
 - What is the gain in cavity acceptance rates?
 - What range of gradients is allowable from the RF side?
 - What if any is the implication of Field Emission / Q0 at the higher gradients?
 - How might this be implemented over a 5 year production plan?
- For the BAW
 - Plots of the current data set are already in the R&D plan (done)
 - RF input is required on the allowable range, for instance
 - Is it acceptable to assume that we can use cavities at the very upper end of performance or is this actually limited by the installed RF?
 - Are there ways to groups cavities that should be assumed in the model
 -
- Inputs to this discussion are pretty much already available. Discussion should be on whether the R&D plan supports coming to a conclusion.....