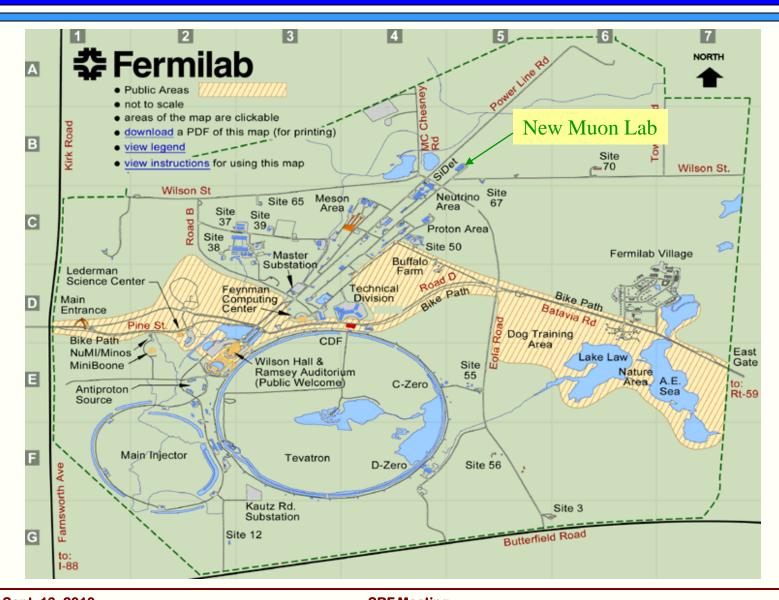
SRF Beam Test Facility at NML

Jerry Leibfritz

Sept. 13, 2010


Outline

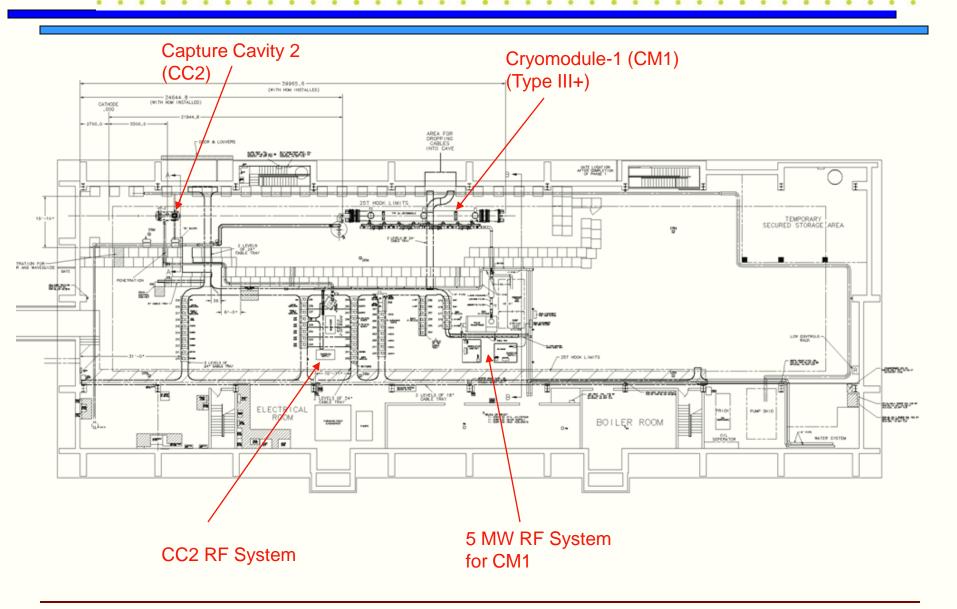
- NML Project Overview and Goals
- Layout of Facility
- Technical Progress
- Schedule
- Budget

Location

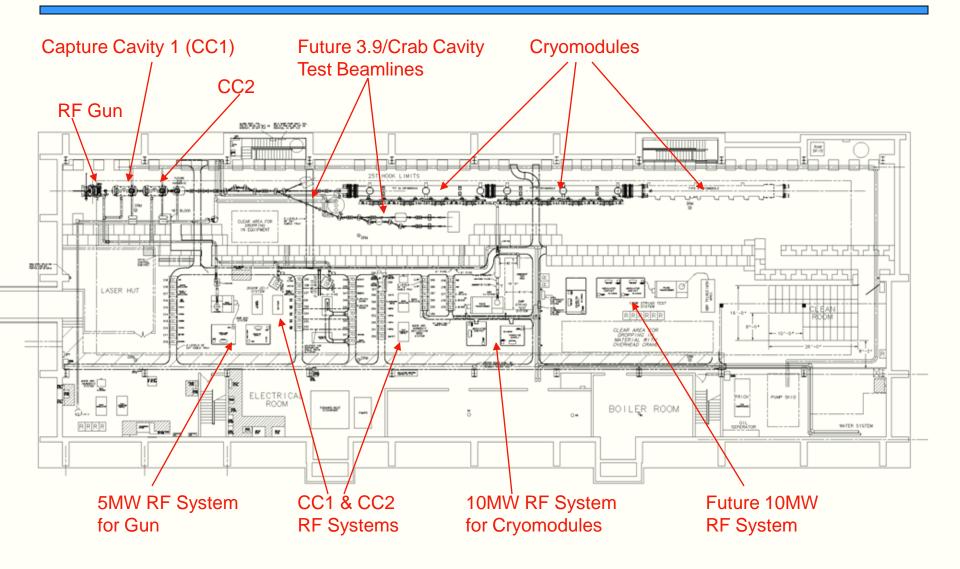
NML Project Overview

Overall Goals

- Build an RF Unit Test Facility at the New Muon Lab (NML)
 - ILC RF Unit = 3 cryomodules
 - 10-MW RF system
 - Beam with ILC parameters (3.2 nC/bunch @3 MHz, Up to 3000 bunches @ 5Hz, 300-µm rms bunch length)
- Build Test facilities for Project-X cryomodules
- Phase-1 (FY07 FY10)
 - Prepare facility for testing first cryomodule (CM1) without beam
 - Infrastructure, RF power, cryogenics (Tevatron satellite refrigerators #1 & #2)
 - Install first cryomodule (CM1) and Capture Cavity-2 (CC2), cooldown, and RF test


NML Project Overview

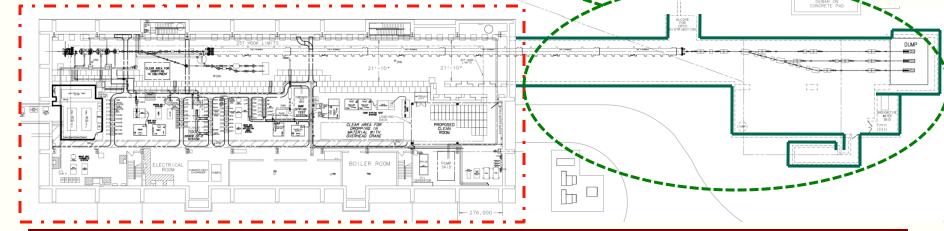
- Phase-2 (FY10 FY11)
 - Prepare for first beam
 - Civil construction to expand facility (capability for 2 RF units)
 - Move parts from FNPL photo-injector to NML
 - Install new gun, injector, test beamlines, beam dump
 - Install/test second cryomodule (CM2)
- Phase-3 (FY11 FY14)
 - Complete RF Unit
 - Upgrade RF system to 10 MW, install third cryomodule (CM3)
 - Commission new Cryogenic Plant
 - Operate full RF Unit with beam
 - Begin installation of 2nd RF Unit


Phase-1 Layout of NML

Phase 2/3 Layout of NML Building

Expansion of NML Facility

lo. 1

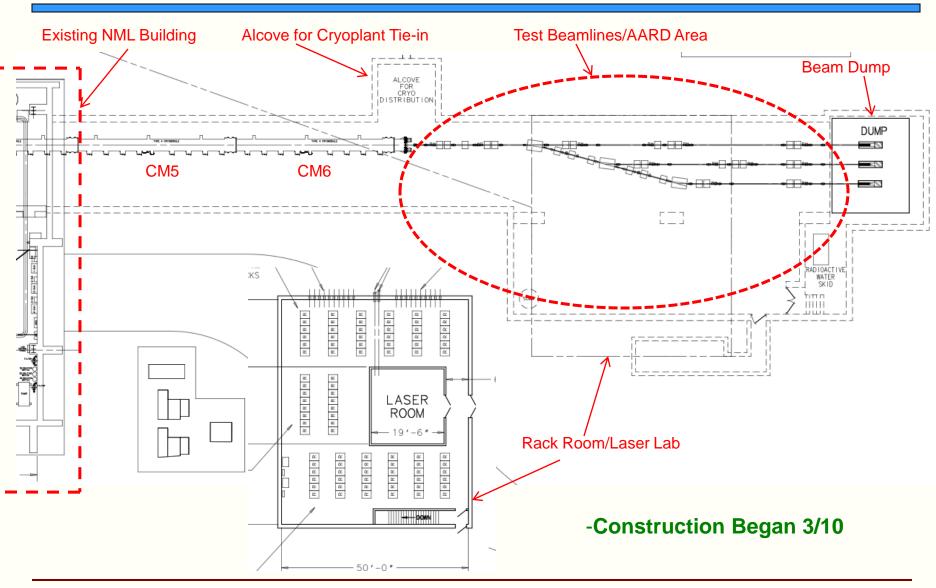

(300 W Cryogenic Plant, Cryomodule Test Stands, RF Test Area, Vacuum Cleanroom)

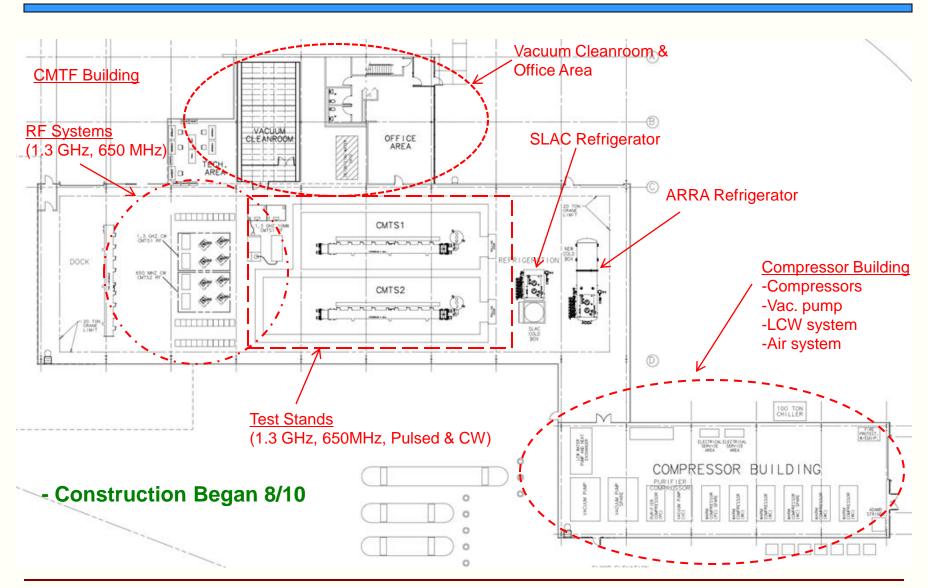
Funded by ARRA

New Underground Tunnel Expansion

(Space for 6 Cryomodules (2 RF Units), AARD Test Beam Lines)

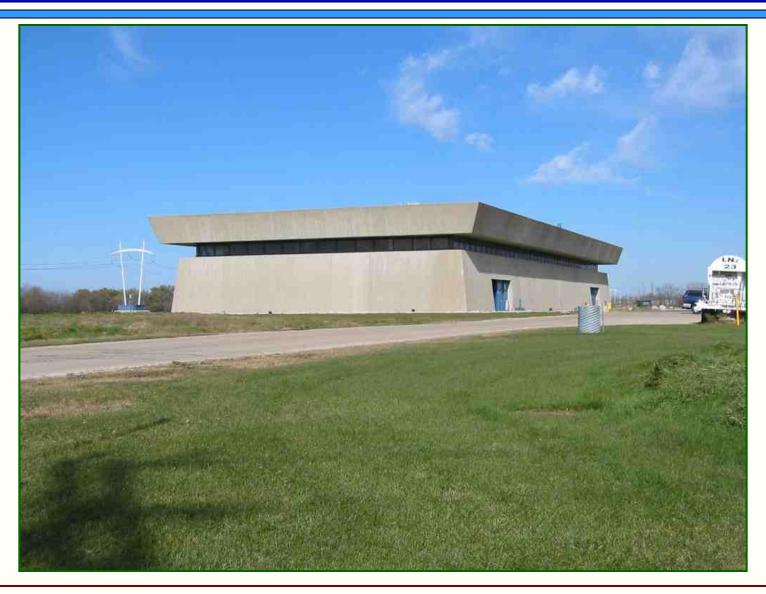
Existing NML Building


Future NML Complex


NML Expansion

Cryomodule Test Facility (CMTF)

Vacuum Cleanroom


Future NML Complex

NML Technical Progress

NML Infrastructure (FY07-08)

- Completed Removal of Chicago Cyclotron Magnet
- Prepared Building Infrastructure
 - AC power, network cabling, piping, cable tray, air ducts
 - Cleaned out building, epoxy coated floor, alignment network
 - Cave for Phase-1 (~3/4 of full cave), electrical racks
 - Reused existing equipment (tray, racks, piping, shield blocks, gas storage tanks, cryo heat exchangers & refrigerator components)

NML During Removal of Chicago Cyclotron Magnet(CCM) (September, 2006)

NML Facility after CCM Removal and Floor Painting (February, 2007)

Recent Picture of NML Facility

View From North

NML Expansion Construction

Loading Dock Demolition

New Loading Dock

NML Expansion Construction

Digging Tunnel

Pouring Concrete

Finished Tunnel

CMTF Construction

NML Cryogenic System

NML Cryogenic System Plan

- Start with two 625 W (4 K) Tevatron satellite Refrigerators and large vacuum pump (~60 W at 1.8 K)
- Move 1000 W (4 K) BABAR refrigerator from SLAC
- Add new 250 W (2 K) refrigerator

Status

- Installed Refrigerator room & helium storage tanks
- Tevatron Satellite Refrigerator #1 operational 8/07
- Tevatron Satellite Refrigerator #2 operational 4/10
- Distribution system Feedbox, Feed Cap & End Cap installed
- Vacuum pump and Frick compressor
- Capture Cavity-2 (CC2) Cooled to 2K 10/09
- Cryomodule-1 (CM1) Cool down to 2K Fall 2010

NML Cryogenic System

NML RF Systems

RF System

- 5 MW for CM1
 - Fully Operational
- 300 KW for CC2
 - Fully Operational
- Distribution
 - CM1 distribution from SLAC (in-house)

CM1 moving to **NML**

NML Accelerator

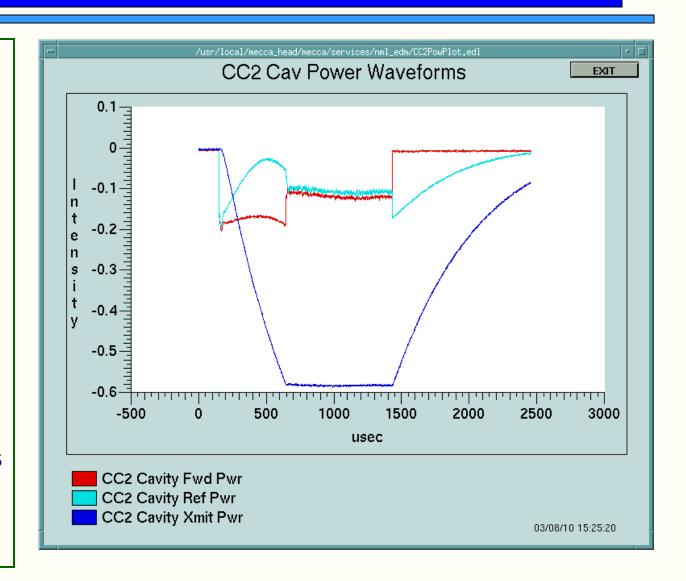
Injector

- Detailed Lattice designed
- New gun system being installed
 - Collaboration with DESY, KEK & INFN
- CC2 (single 9-cell cavity) operational 10/09

Accelerator

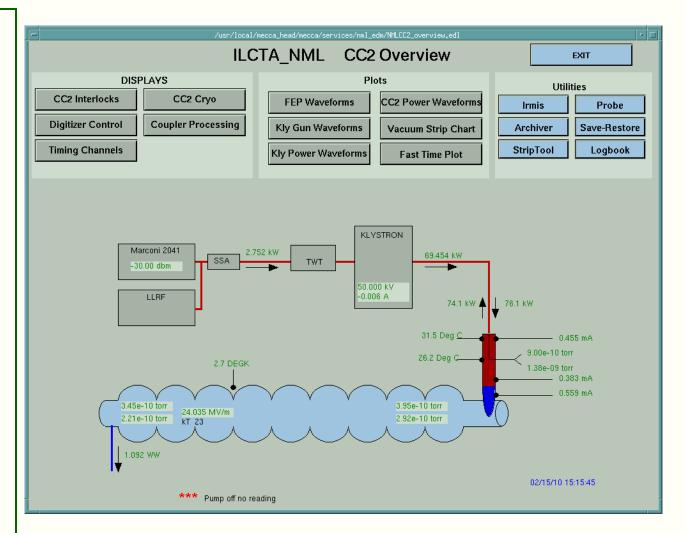
- CM1 installed, aligned, and under vacuum
- Cable pulls & cryo interconnects
- Test Beamline
 - Beamline layout complete
 - Beam Absorber analysis complete

CC2 Operation At NML

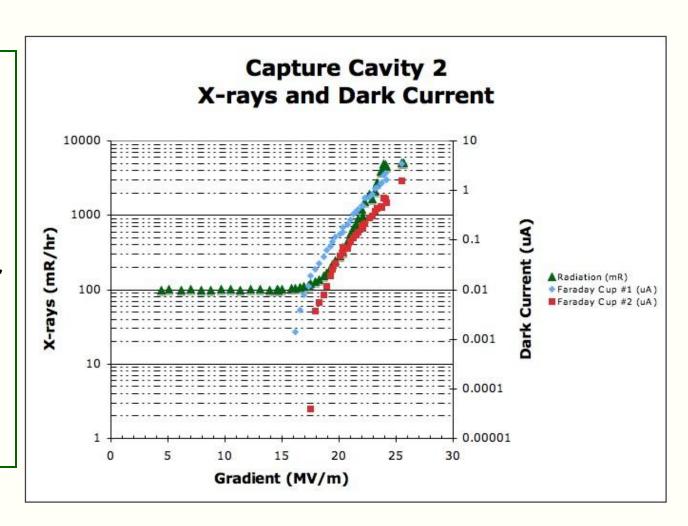

- Moved from MDB to NML 2/09
- Installation complete (vacuum, cryo., alignment) 6/09
- First warm RF powering 6/09
- Coupler conditioning complete 7/09
- CC2 operated at 2 Kelvin 10/09
- 24 MV/m gradient (limited by Coupler PM Tube trips) 2/10
 - Similar to performance in MDB
- Studies of Low Level RF system and tuner, microphonics and Lorentz Force Detuning Compensation

CC2 Operations at NML

Regulated operation


- LLRF
 feedback
 and
 feedforward
 enabled
- 1.3 mspulse width
- 5 Hz
- 20 MV/m
- Limitation is Coupler

CC2 Performance at NML


- Peak gradient - 24 MV/m
- Limited by Coupler activity
- $Q_L = 2.92 X$ 10^6
- Similar performance as at MDB previously

CC2 Performance at NML

- Onset of field emission
 ~16 MV/m
- Similar threshold for dark current
- Largest amplitude at Coupler end

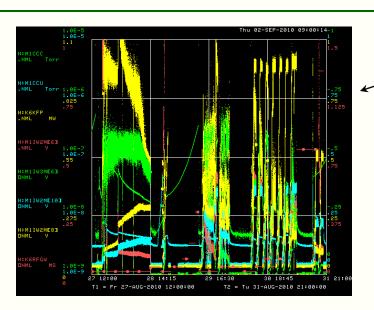
CM1 Testing

- Our first goal is to understand the performance of cavities in CM1 compared to HTS tests at DESY
 - We want to verify our assembly techniques in CAF
- Note that the dressed cavities provided by DESY for CM1 are NOT 35 MV/M cavities
 - We do not expect to meet the S1 goal of 31.5 MV/M
 - Average of Chechia tests is 23.5 MV/M
 - Anything close to this number will be a great success

	Z89	AC75	AC 73	Z106	Z107	z91	z91	S33
Eacc max [MV/m]	23.5	22.5	30.6	33.5	36.5	31.1	28.5	26.6
Fe onset [MV/m]	> 23,5	>22,5	25.83	21	30.6	25.6	20	19.28
Eacc @ 1Exp-2 mGy/min	> 23,5	>22,5	28.6	27	32.4	29.7	24.41	23,48

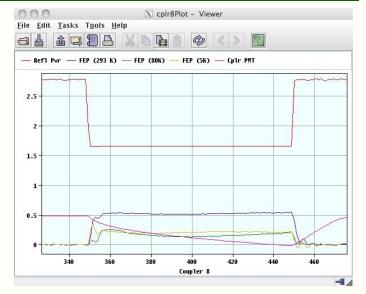
 It would be useful to understand what other tests might be useful for ILC with CM1

CM1 Test Plan



- Virtually identical to DESY run plan for XFEL modules (courtesy of Dennis Kostin) and Fermilab experience at HTS and CC2
- TEST PROCEDURE:
 - 1. RF Cable Calibration
 - 2. Technical Interlock / Sensor checkout
 - 3. RF source / Waveguides / LLRF
 - 4. Warm Input RF Coupler Conditioning in progress, 3/8 complete
 - 5. Cooldown to 2K
 - 6. Cavity Spectra measurements
 - 7. Cavity Tuners Test and Tuning
 - 8. Coupler Q_{load} measurement
 - 9. Set Cavities On Resonance
 - 10. Cold Input RF Coupler and Cavity Conditioning
 - 11. Module Performance Measurement
 - 12. Single Cavity Measurements
 - 13. Cryo system performance test (if needed).

CM1 Test Plan



- RF system is demonstrated good to ~3MW @ 2Hz, 1300 ms pulse
- Warm coupler conditioning
 - up to 1 MW for short (up to 400 us pulses)
 - 600 kW for 800, 1300 us pulses
 - Using DESY results as the guide

Conditioning Sequence for #6

FEP, PMT response during #8 conditioning

NML Auxiliary Systems

Vacuum System

- Low-particulate vacuum cart built and tested
 - Leak detectors, RGA's, pumps, gauges, controls
- (4) portable cleanrooms built (capable of achieving Class-10)
- CM1 cavity string, and coupler systems under vacuum (10⁻⁹ Torr)

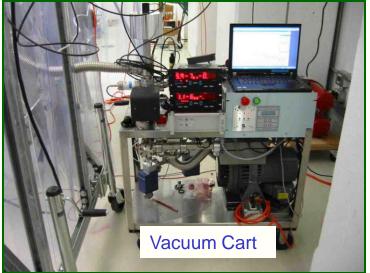
Water Cooling System (LCW)

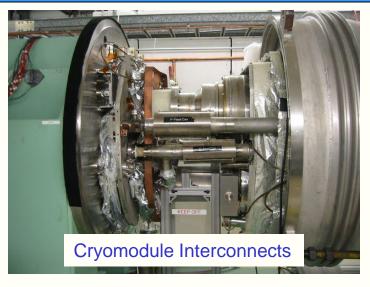
- System design complete
- New pumps and heat exchanger installed
- Temporary skid (for Phase-1) operational

Safety Systems

Radiation, ODH, Interlock, and Safety Assessment documentation complete

NML CM1 Vacuum Work



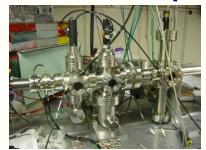


NML Auxiliary Systems

NML Controls/Instrumentation

Controls

- Control Room finished and operational
- Modified (upgraded) ACNET control system in use



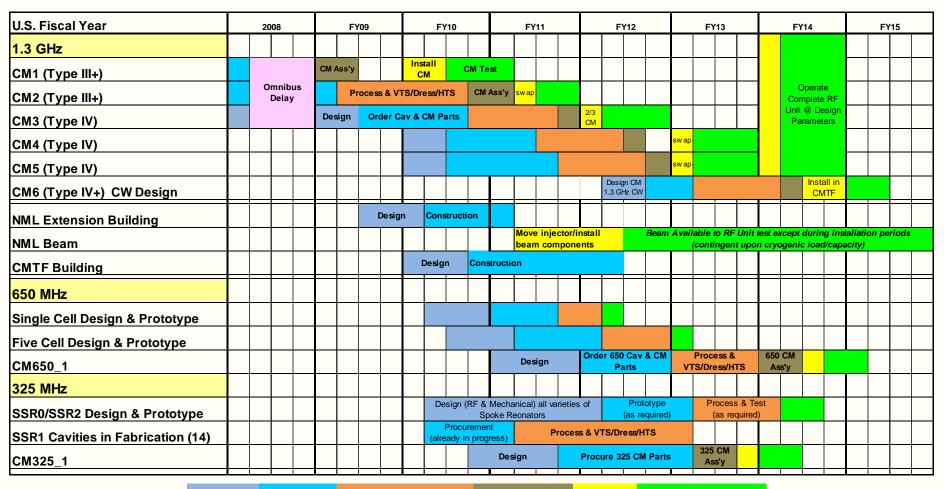
Before

After

- Instrumentation
 - Wire Position Monitors for CM1 tested and installed in Endcaps
 - Faraday Cups assembled
 - RF protection/interlock system complete
 - Beamline Instrumentation prototypes being Testing at A0 Photo Injector

NML Schedule/Milestones

•	Phase-1 Cryogenic System Operational	(August 2007)
•	Delivery of First Cryomodule to NML	(August 2008)
•	Begin Civil Construction of NML Expansion	(March 2010)
•	Warm RF Testing of First Cryomodule	(July 2010)
•	Begin Construction of CMTF Building	(August 2010)
•	First Cryomodule Ready for Cooldown	(Fall 2010)
•	Cold RF Testing of First Cryomodule	(Fall 2010)
•	Delivery of 2nd Cryomodule to NML (S1)	(2011)
•	Install Injector & Test Beam Lines	(2011)
•	First Beam	(2012)
•	New Cryoplant Installation/Operation	(2013-14)
•	RF unit test with beam (S2)	(2014)


NML Budget

• SRF (18.2) - FY10	\$1,917k
 Beamline/Facility Equipment (ARRA) 	\$10,765k
 FY10-FY11 (~ 60% obligated) 	
 Expansion Construction (ARRA GPP) 	\$4,900k
- 80% complete	
 CMTF Construction (ARRA GPP) 	\$7,100k
- Began 8/10	
 Cryoplant Purchase (ARRA MIE) 	\$9,348k
Place Order 9/10	
 RF Equipment for CMTF (ARRA) 	\$2,910k
– (~ 70% Obligated)	
. Total	¢26 040la
• Total	\$36,940k

Integrated SRF Plan (Cryomodules)

	Design	Procure	Process &	Assemble	Install	Commission
			VTS			& Operate
Sept. 13, 2010			Dress & HTSE	Meeting		

Page 39