ZH Branching ratio study at Ecm=350 GeV

ILC physics and software meeting Sep. 17. 2010 H. Ono (NDU)

ZH study current status

• Ecm=250 GeV H \rightarrow cc study is reported at JPS

• Ecm=350 GeV flavor tagging efficiency is checked and compare with 250 GeV for vvH, qqH jet modes

• Plan to attend the ECFA WS at CERN (Oct. 18-24)

Data samples

- Data samples generated at KEK (by A. Miyamoto-san) with grid system
 - Ifn:/grid/ilc/users/miyamoto/CDS/reconstructed/ILD_00/ CMS_350
- Summary of the generated samples:
 - <u>http://wiki.kek.jp/display/~miyamoto/ILC+Common</u>
 <u>+Generator+Samples</u>
- Beam parameter: SB2009 w/ TF, Ecm=350 GeV
- ZH→qqH (hadronic mode)
- $ZH \rightarrow vvH$ (neutrino mode)
 - some inconsistency with reconstructed_2 dir data

Vertex tagging performance comparison

ZH \rightarrow qqH (hadronic mode) with χ^2 < 10 cut (better Z/H combination is required)

Efficiency with true jet flavor vs purity Tagging performance looks slightly better at 350 GeV compare to 250 GeV c/bc-tagging efficiency looks poor even for Ecm=250 GeV.

$ZH \rightarrow vvh$ neutrino mode

After all cuts applied

Next step : $N_{ZH}^*\sigma_{xx}$ will be compared with flavor tagging cut

Flavor tagging performance on ILD LOI

FIGURE 1.2-11. a) Flavour tagging performance of the ILD detector for 91 GeV $Z \rightarrow q\bar{q}$ events for both the three double-sided ladders (VTX-DL) layout and with five single-sided ladder layout (VTX-SL). Also shown for the VTX-DL is the impact of background on the flavour tagging performance. b) Flavour tagging performance of the ILD detector for 91 GeV $Z \rightarrow q\bar{q}$ events for the VTX-DL layout. In all cases the acceptance corresponds to $|\cos \theta_{iet}| < 0.95$.

ILD detecto

The flavour tagging performance [5] of ILD is studied for the two vertex detector geometries considered, three double-sided ladders (VTX-DL) and five single-sided (VTX-SL) ladders. No significant differences in the input variables for the ANNs are seen for two geometries, and therefore the ANNs trained for the VTX-DL option were used for both VTX configurations. The samples used in the training consisted of 150000 Z $\rightarrow q\bar{q}$, at the Z pole energy, equally distributed among the three decay modes q = b, c and light quarks. The test samples used to evaluate the flavour tagging performance were generated independently and consist of 10000 events of $Z \rightarrow q\bar{q}$ generated at both $\sqrt{s} = 91$ GeV and $\sqrt{s} = 500$ GeV, with the SM flavour mix of hadronic final states. The ILD flavour tagging performances at 91 GeV for the two vertex detector options are shown in Figure [1.2-11]s). The performance differences between the two VTX geometries are small ($\leq 1\%$). Uncertainites due to the statistical fluctuations of the test sample and in those introduced in the ANN training are estimated to be $\leq 2\%$. The performance for $Z \rightarrow q\bar{q}$ at $\sqrt{s} = 500$ GeV is shown in Figure [1.2-11]b). It should be noted that for the 500 GeV results the ANNs were not retrained, *i.e.* those obtained for $\sqrt{s} = 91$ GeV were used. Consequently, improvements in the performance are expected.

Backup

Cross-section of ZH at Ecm=350 GeV

Vertex tagging performance at 250 GeV

Vertex tagging performance at 350 GeV

 χ^2 reject the miss jet pair combination

SB2009 wTF parameters

	RDR			SB2009 w/o TF				SB2009 w TF			
CM Energy (GeV)	250	350	500	250.a	250.b	350	500	250.a	250.b	350	500
Ne- (*1010)	2.05	2.05	2.05	2	2	2	2.05	2	2	2	2.05
Ne+ (*10 ¹⁰)	2.05	2.05	2.05	1	2	2	2.05	1	2	2	2.05
nb	2625	2625	2625	1312	1312	1312	1312	1312	1312	1312	1312
Tsep (nsecs)	370	370	370	740	740	740	740	740	740	740	740
F (Hz)	5	5	5	5	2.5	5	5	5	2.5	5	5
γex (*10-6)	10	10	10	10	10	10	10	10	10	10	10
γey (*10-8)	4	4	4	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
βx (mm)	22	22	20	21	21	15	11	21	21	15	11
β y (mm)	0.5	0.5	0.4	0.48	0.48	0.48	0.48	0.2	0.2	0.2	0.2
σz (mm)	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
σx eff (*10 ⁻⁹ m)	948	802	639	927	927	662	474	927	927	662	474
σy eff (*10 ⁻⁹ m)	10	8.1	5.7	9.5	9.5	7.4	5.8	6.4	6.4	5.0	3.8
L (10 ³⁴ cm ⁻² s ⁻¹)	0.75	1.2	2.0	0.2	0.22	0.7	1.5	0.25	0.27	1.0	2.0

SB2009 new beam parameters

	200	250	350	500	1000
Rate (Hz)	10	10 <mark>(5)</mark>	5	5	4
Δp/p(e-)(%)	0.22	0.22 <mark>(0.220)</mark>	0.22(0.218)	0.21 <mark>(0.207)</mark>	0.11
Δp/p(e+)(%)	0.17	0.14 <mark>(0.130)</mark>	0.10(0.093)	0.07 <mark>(0.065)</mark>	0.04
β _x *(mm)	16	12 <mark>(21)</mark>	15	11	30
$\sigma_x^*(mm)$	904	700 <mark>(927)</mark>	662	474	554
σ _y *(mm), wTF	6.0	5.3 <mark>(6.4)</mark>	4.5 (5.0)	3.8	2.7
L(x10 ³⁴ cm ⁻² s ⁻¹),wTF	0.5	0.8 <mark>(0.27)</mark>	1.0	2.0	2.8 ^[2]

[1]parameters different from sb2009 are listed. Values in () are SB2009 values.[2] Luminosity without traveling focus.

Miyamoto-san's slide at ILD optimization meeting 2010. Sep. 08