

Locating quench origin by second sound detection

Julia Maximenko Moscow Institute of Physics and Technology Supervisor Dmitri Sergatskov, FNAL

Inverse problem to locate quench origin

Measured times $t_i \rightarrow r_i \rightarrow$ quench origin coordinates.

Solution

Overdetermined system of nonlinear equations:

 $(x_0 - x_i)^2 + (y_0 - y_i)^2 + (z_0 - z_i)^2 = C^2 \cdot t_i^2, i = \overline{1, n}$

C – second sound velocity n – number of ss-transducers (x_i, y_i, z_i) – i-transducer coordinates (x_0, y_0, z_0) – quench origin, variables

 \Rightarrow Minimum norm solution.

Function to minimize:

$$f(x_0, y_0, z_0) = \sum_{i=1}^{n} \left[(x_0 - x_i)^2 + (y_0 - y_i)^2 + (z_0 - z_i)^2 - C^2 \cdot t_i^2 \right]^2$$

The method of minimization is Nelder-Mead Algorithm, i.e. downhill simplex method, GNU Octave implementation.

RMS error analysis

RMS error analysis

RMS error analysis

Different detectors configuration

#1 – 4 planes, 8 detectors; #2 – 4 planes, 16 detectors; #3 – 2 planes, 8 detectors

Cavity surface restriction

Variables number reduction in the error function:

Single cell experiment

9-cell experiment

Inconsistent readings:

Helium blob

Hot spot

tb9aes003

Thank you for your attention!