ZH Branching ratio study

ILC physics and software meeting Sep. 23. 2010 H. Ono (NDU)

Status from last week

- Comparison of Ecm=250/350 GeV sample
 - Flavor tagging efficiency vs. purity
 - Event shape, mass distribution
- Some preliminary results are shown in ILDOPT meeting
 - $H \rightarrow qq$ quark component (bb dominant) is different from $Z \rightarrow qq$ (uds) (LCFIVTX is trained with $Z \rightarrow qq$)
 - $ZH \rightarrow qqH$ includes $Z \rightarrow qq$ component
 - Check Z candidate jets in $ZH \rightarrow qqH$ flavor tagging performance
 - Ecm=350 GeV analysis has already disappeared from new benchmark list for DBD?

$H \rightarrow qq$ flavor tagging performance in ZH $\rightarrow qqH$ 4-jets reconstruction

ZH \rightarrow qqH (hadronic mode) with χ^2 < 10 cut (better Z/H combination is required)

$Z \rightarrow qq$ flavor tagging performance in $ZH \rightarrow qqH$ 4-jets reconstruction

ZH \rightarrow qqH (hadronic mode) with χ^2 < 10 cut (better Z/H combination is required)

Flavor tagging performance on ILD LOI

FIGURE 1.2-11. a) Flavour tagging performance of the ILD detector for 91 GeV $Z \rightarrow q\bar{q}$ events for both the three double-sided ladders (VTX-DL) layout and with five single-sided ladder layout (VTX-SL). Also shown for the VTX-DL is the impact of background on the flavour tagging performance. b) Flavour tagging performance of the ILD detector for 91 GeV $Z \rightarrow q\bar{q}$ events for the VTX-DL layout. In all cases the acceptance corresponds to $|\cos \theta_{jet}| < 0.95$.

Event shape difference in $ZH \rightarrow vvH$ mode

Reconstructed Higgs mass vs Higgs jets angle

Jets angle becomes narrower at 350 GeV by boost

Higgs mass distribution in $ZH \rightarrow qqH$

Higgs mass distribution of the second stription of th

Slightly better mass reconstruction performance in 350 GeV H/Z mass cut, visible energy cut will improve the Z/H jet paring performance

Jet pairing performance becomes better from smaller jet overlapping