

Cavity Surface Feature Recognition

Marc Wenskat DESY

1

22.11.2010

Examples

- Picture covers an angle of 4 degrees
 - 90 Images per equator, 810 per cavity (without iris)
 - 2616x3488 Pixel, 3.5µm/pixel, ~26MB per file

How do I find 'irregularities' in this huge amount of data? And are all the 'irregularities' defects?

Image understanding

- There is no perfect way...
 - Depending on the task and the image: different techniques
 - Not even objective criteria for benchmarking of algorithms
- Step by Step:
 - Image creating / formating
 - Image processing (high & low level, bottom up or top down)
 - Image segmentation
 - Segment description
 - Pattern recognition / Image understanding

IIL

- Even processing is a vital point and can also used after segmentation, segmentation is the key
- What is segmentation?
 - Split image in
 - Background
 - Regions
 - Merge regions if necessary
 - Analyze these regions

IIL

Segment description

- What kind of parameter do we get?
 - e.g. area, eccentricity, compactness, bending energy or curvature, euler number
 - Intensity gradient ~ slope

IIL

- Or: What can I learn from the parameter?
- What classes do exist?
 - Mechanical defect
 - Grain Boundary
 - Chemical compound
 - Artifact
- How to classify?
 - Statistical Descriptor
 - Template Matching
 - Neuronal Network
 - Decision Tree

Future Work & Summary

- Quantitative characterization of the surface
- Search for Defects with higher Quench or FE probability
- Feedback to vendors concerning process quality
- Therefore, we need to find the right steps
 - Different algorithms for different defects?
 - What parameters are relevant?
 - What classifiers are needed?

22.11.2010

•

HiGrade-Meeting

Back Up

ilc Processing Æ1 22.11.201 0

Figure 5.47 One-dimensional example of watershed segmentation. (a) Gray level profile of image data. (b) Watershed segmentation – local minima of gray level (altitude) yield catchment basins, local maxima define the watershed lines.

From: M. Sonka, V. Hlavac, R. Boyle, "Image Processing, Analysis and Machine Vision, Chapman & Hall Computing, 1993

11

Watershed-Transformation

HiGrade-Meeting

ilC

Quadtree-Segmentation

From: M. Sonka, V. Hlavac, R. Boyle, "Image Processing, Analysis and Machine Vision, Chapman & Hall Computing, 1993

Example taken from Mathworks Homepage: http://www.mathworks.com/help /toolbox/images/ref/qtdecomp.ht ml

Image courtesy of NASA

22.11.2010

Quadtree-Segmentation

ΪĹ

Colorbased-Segmentation

From 2D to 3D

Extended Focus

ΪĹ

External program, based on 'Complex wavelet-based

method' B. Forster, D. Van De Ville, J. Berent, D. Sage, M. Unser, " Complex Wavelets for Extended Depth-of-Field: A New Method for the Fusion of Multichannel Microscopy Images ," Microsc. Res. Tech., 65(1-2), pp. 33-42, September 2004.

HiGrade-Meeting

16

Lausanne

From 2D to 3D

22.11.2010