ZH Branching ratio study

ILD software phone meeting Oct. 13. 2010 H. Ono (NDU)

ZH Branching Ratio measurement

Higgs BR study at Ecm=250 GeV is one of the benchmark process in LOI Higgs BR at Ecm=350 GeV is also the new benchmark process for DBD

SB2009 beam parameters

- New benchmark process includes the ZH BR study at Ecm=350 GeV
- SB2009 beam parameters effect need to be compared in BR study

Beam parameters	RDR		SB2009	w/ TF	SB2009 new		
Ecm (GeV)	250	350	250b	350	250	350	
F (Hz)	5	5	2.5	5	10	5	
bx (mm)	22	22	21	15	12	15	
L (10 ³⁴ cm ⁻² s ⁻¹)	0.75	1.2 (0.27	1.0	0.8	1.0	

Luminosity reduction is indicated especially at low energy

New Ecm=350 GeV data samples are generated and analyzed with SB2009 w/ TF beam parameter (A. Miyamoto)

Miyamoto-san's slide at ILD optimization meeting 2010. Sep. 08

Simulation setup and signal samples

Event generation : whizard Simulation and analysis : ilcsoft v01-06 Detector model : ILD_00 full simulation Beam parameter : RDR(LOI 250GeV), SB2009 w/ TF (350 GeV) Data samples : DST sample produced in KEK (A. Miyamoto) Ifn:/grid/ilc/users/miyamoto/CDS/reconstructed/ILD_00/CMS_350 neutrino (ZH \rightarrow vvH) hadron(ZH \rightarrow qqH) $lepton(ZH \rightarrow IIH)$ e e^{i} e^{i} 4jet vv+2jet ll+2jet IIH qqH **Cross section** vvH 77.4 fb 210.0 fb 31.7 fb 250 GeV beam polarization 25.3 fb 105.2 fb 144.4 fb 350 GeV (e+,e-)=(+30%, -80%)

Background samples at 350 GeV

Following background samples are considered

- qqqq, tt, llqq, vlqq, vvqq, llll (qq is not included yet)
- *tt* is generated with physsim including threshold QCD correction
- Data are scaled to be L=250 fb⁻¹

Event shape comparison for 250/350 GeV

Reconstructed Higgs mass vs Higgs jets angle in $ZH \rightarrow vvH$

Jet pair combination performance

Slightly better mass reconstruction performance in 350 GeV Better jet pair combination performance is achieved with same χ^2 cut

Flavor tagging performance comparison

- Compare Flavor tagging performance at Ecm=250 with 350 GeV
- LCFIVTX is trained with $Z \rightarrow qq$ @91.2 GeV sample
- Use same quark composition sample ($ZZ \rightarrow vvqq, Z \rightarrow qq$)

BR measurement study $(ZH \rightarrow qqH \text{ only for now})$

$ZH \rightarrow qqH$ selection criteria

Ecm=250 GeV

- 1. $\chi^2 < 10$ (χ^2 of jet pair combination)
- 2. # of charged tracks > 4
- 3. $-\log 10(Y_{34}) < 2.7$ (Y₃₄: 3 \rightarrow 4 Jet combination threshold)
- 4. thrust < 0.9
- 5. $|\cos\theta_{\text{thrust}}| < 0.9$
- 6. $105 < \underline{\theta}_{Hjets} < 160 \text{ deg.}$
- 7. $110 < M_{Hfit} < 130 \text{ GeV}$

Ecm=350 GeV

1. $\chi^2 < 10$

- 2. # of charged track > 4
- 3. -log10(Y₃₄) < 2.7
- 4. thrust < 0.85
- 5. $|\cos\theta_{\text{thrust}}| < 0.8$
- 6. $70 < \underline{\theta}_{Hjets} < 120 \text{ deg.}$
- 7. $110 < M_{Hfit} < 130 \text{ GeV}$

Selection criteria is optimized for 350 GeV from the different event shape Higgs decay jets angle becomes narrower by boost

$ZH \rightarrow qqH$ cut optimization at 250 GeV

H jets angle hjetsangle qqqq sangle nlqq 700 16000 llqq nnqq 1400 12000 qq 10000 105 160 8000 300 6000 200 4000 200 00 120 140 degree

250 GeV final state will be spherical compare to 350 GeV especially for hadronic mode

$ZH \rightarrow qqH$ cut optimization at 350 GeV

Background reduction summary ($ZH \rightarrow qqH$)

250 GeV	No cuts	chi2	Ntrack	-Log(Y34)	thrust	cosθ	θH	Mh	Eff
н→сс	1916	1460	1114	1102	1081	963	890	804	41.9%
H→bb	34963	24568	19542	19351	19013	16854	15488	13651	39.0%
ZH → qqH all	52507	32430	25252	25037	24656	21856	20041	17617	33.6%
SM Bkg	44825201	2608604	1120793	1002011	935788	696026	621975	504788	1.1%
BG w/o qq	9472101	1388294	824641	818608	815228	591524	533500	430998	4.6%
S _{cc} ∕√B	0.05	0.31	1.05	1.10	1.12	1.15	1.13	1.13	
S _{bb} /√B	0.86	5.27	18.46	19.33	19.65	20.20	19.64	19.21	
350 GeV	No cuts	chi2	Ntrack	-Log(Y34)	thrust	cosθ	θН	Mh	Eff
н→сс	1296	899	672	652	599	562	525	465	35.9%
H→bb	24051	14919	11589	11275	10410	9675	8879	7665	31.9%
ZH → qqH all	36099	20203	14905	14546	13524	12572	11278	9723	26.9%
SM Bkg	8266030	509774	209765	197726	114841	85787	60331	32896	0.4%
S _{cc} ∕√B	0.45	1.26	1.47	1.47	1.77	1.92	2.14	2.56	
S _{bb} /√B	8.37	20.90	25.30	25.36	30.72	33.03	36.15	42.26	

Template fitting strategy

 $\left(N_{ijk}^{data} - \sum_{s=bb/cc/others} r_s\left(\frac{N^{ZH}}{N^s}\right) N_{ijk}^s - r_{bkg} N_{ijk}^{bkg}\right)$ Template fitting is applied $n_b n_c n_{bc}$ $\chi^2 =$ with minimizing χ^2 $\sigma_{N_{ijk}^{all}}$ i=1 i=1 k=1Fitted parameters: r_{bb/cc/others} SM BG templates Merge with Data h2All Entries 20657 120 tean x 0.4218 Mean v. 0 1765 0.492 7000 7000 r_{xx} fraction RMS x 0.3665 RMS y 0.216 RMS x 0.3504 0 355 6000 6000-RMS y 0.216 100 RMS 5000 5000 4000 4000 3000 3000 2000 2000 1000 1000 $L^{\hat{d}_{\hat{\theta}_{\hat{d}_{\hat{1}}}}}}}}}}}}}}}}}}}}}}}}}} }} } } \\$ δ.δ.d.3.2.1.0 0.10.20.30.40.50.60.70. Higgs decay templates 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 C-likeness h2Sigbb Entries 48867 h2Sigcc h2Sigoth Entries 6134 H→bb H→cc $H \rightarrow others$ PbbTable Sec. 100 Mean x 0.8536 Man x 0.9414 Tean x 0.5124 Mean y 0.1045 Mean y 0.5047 Mean y 0.1392 ean 0.5223 1800 RMS x 0.145 RMS x 0,2768 RMS x 0.268 80 0.2 RMS 0.2815 1600-RMS y 0.1593 RMS x 0.290 RMS y 0,2033 70 1400-60 1200 50 c-C.L. 1000 40 800-30 600-20 400 200 ⁸J. 5. 6. 10 0 0. 10. 20. 30. 40. 50. 60. 7 c-likeness 3D template sample image

2010. Oct. 13th

ILD software phone meeting

14

Relative BR comparison

Relative branching fraction has checked for Ecm=250, 350 GeV

$Br(H \to c\bar{c})$	r_{cc}/ε_{cc}
$Br(H \rightarrow b\overline{b})$	r_{bb}/ε_{bb}

	Efficiency	Ecm=250	GeV	Ecm=350 GeV			
		neutrino	hadron	neutrino	hadron		
is	ϵ_{bb}	36.8%	39.0%		31.7%		
	8 ₀₀	41.8%	41.9%		35.4%		

$ZH \rightarrow vvH$ neutrino mode analysis	ϵ_{b}
is now in progress	٤ _{co}

Fitted results	Ecm=250 GeV			Ecm=350 GeV	
mode	neutrino	hadron	w/o qq	hadron	
rbb	0.853+-0.009	0.774+-0.013	0.775+-0.014	0.788+-0.008	
rcc	0.052+-0.004	0.046+-0.005	0.046+-0.004	0.048+-0.002	
BR(cc)/BR(bb)	0.054+-0.004	0.055+-0.006	0.055+-0.005	0.054+-0.003	
Δ BR(cc)/BR(bb)	7.94%	10.15%	9.68%	6.18%	statistic or

Measurement accuracy looks improved in hadron mode, caused by better S/ \sqrt{N} ?

Summary and next step

- Compare Ecm=250/350 GeV samples for $ZH \rightarrow qqH$
 - Boost effect is observed for angles and Mh distribution
 - Jet pair combination in qqH (4 jets) mode is improved
 - Consistent result is obtained for flavor tagging performance in ZZ →vvqq sample
 - Selection criteria is optimized for 350 GeV (better S/VN)
- Compare the relative BR measurement accuracy
 - qq sample production is in progress
 - qqqq 4j background reduction looks better at Ecm=350 GeV
 - $ZH \rightarrow vvH$, IIH are also checked
 - Check the generated samples completely copied from grid?

Backup

2010. Oct. 13th

Background reduction ($ZH \rightarrow qqH$, 250 GeV)

				-Log					
250 GeV	No cuts	chi2	Ntrack	(Y34)	thrust	cosθ	θΗ	Mh	Eff
н→сс	1916	1460	1114	1102	1081	963	890	804	41.9%
H→bb	34963	24568	19542	19351	19013	16854	15488	13651	39.0%
ZH → qqH all	52507	32430	25252	25037	24656	21856	20041	17617	33.6%
qqqq	4048390	1299950	824215	818221	814909	591276	533302	430869	10.6%
qq	35353100	1220310	296152	183403	120560	104502	88475	73790	0.2%
nlqq	4114190	25981	119	105	90	80	55	14	0.00%
llqq	398319	42195	307	252	215	158	133	87	0.02%
nnqq	149979	0	0	0	0	0	0	0	0.00%
1111	761223	20168	0	0	0	0	0	0	0.00%
SM Bkg	44825201	2608604	1120793	1002011	935788	696026	621975	504788	1.1%
BG w/o qq	9472101	1388294	824641	818608	815228	591524	533500	430998	4.6%
S _{cc} ∕√B	0.05	0.31	1.05	1.10	1.12	1.15	1.13	1.13	
S _{bb} /√B	0.86	5.27	18.46	19.33	19.65	20.20	19.64	19.21	

Background reduction ($ZH \rightarrow qqH$, 350 GeV)

				-l og					
350 GeV	No cuts	chi2	Ntrack	(Y34)	thrust	cosθ	θН	Mh	Eff
H→cc	1296	899	672	652	599	553	516	460	35.5%
H→bb	24051	14919	11589	11275	10410	9636	8811	7623	31.7%
ZH → qqH all	36099	20203	14905	14546	13524	12523	11191	9675	26.8%
qqqq	3094510	322790	179720	167952	85560	54839	39092	27214	0.9%
tt	166459	49314	29138	29096	28832	25962	17568	5428	3.3%
vlqq	3343060	81620	638	489	350	270	158	43	0.0%
llqq	468202	33186	235	173	90	74	51	28	0.0%
vvqq	119416	142	35	16	9	9	2	0	0.0%
	1074390	22722	0	0	0	0	0	0	0.0%
SM Bkg	8266030	509774	209765	197726	114841	81155	56871	32713	0.4%
S _{cc} /√B	0.45	1.26	1.47	1.47	1.77	1.94	2.16	2.54	
S _{bb} /√B	8.37	20.90	25.30	25.36	30.72	33.83	36.95	42.15	
				qq sa	mples g	generati	on is s	still in p	orogr

Flavor tagging performance on ILD LOI

FIGURE 1.2-11. a) Flavour tagging performance of the ILD detector for 91 GeV $Z \rightarrow q\bar{q}$ events for both the three double-sided ladders (VTX-DL) layout and with five single-sided ladder layout (VTX-SL). Also shown for the VTX-DL is the impact of background on the flavour tagging performance. b) Flavour tagging performance of the ILD detector for 91 GeV $Z \rightarrow q\bar{q}$ events for the VTX-DL layout. In all cases the acceptance corresponds to $|\cos \theta_{jet}| < 0.95$.

$ZH \rightarrow vvH$ analysis

Ecm=250 GeV selection criteria

- 80<MissMass<140 GeV
- 20<Pt<70 GeV
- |PI|<60 GeV
- # chdtrk>10
- P_{max}<30 GeV
- Y+<0.02"
- 0.2<Y-<0.8
- 100<MH<130 GeV

Now optimizing vvH mode for 350 GeV

Higgs decay flavor tagging performance

Flavor tagging performance in $ZH \rightarrow qqH$ four jet clustering case

SB2009 beam parameters

	RDR			SB2009 w/o TF				SB2009 w TF			
CM Energy (GeV)	250	350	500	250.a	250.b	350	500	250.a	250.b	350	500
Ne- (*1010)	2.05	2.05	2.05	2	2	2	2.05	2	2	2	2.05
Ne+ (*1010)	2.05	2.05	2.05	1	2	2	2.05	1	2	2	2.05
nb	2625	2625	2625	1312	1312	1312	1312	1312	1312	1312	1312
Tsep (nsecs)	370	370	370	740	740	740	740	740	740	740	740
F (Hz)	5	5	5	5	2.5	5	5	5	2.5	5	5
γex (*10-6)	10	10	10	10	10	10	10	10	10	10	10
γey (*10 ⁻⁸)	4	4	4	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
βx (mm)	22	22	20	21	21	15	11	21	21	15	11
βy (mm)	0.5	0.5	0.4	0.48	0.48	0.48	0.48	0.2	0.2	0.2	0.2
σz (mm)	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
σx eff (*10 ⁻⁹ m)	948	802	639	927	927	662	474	927	927	662	474
σy eff (*10 ⁻⁹ m)	10	8.1	5.7	9.5	9.5	7.4	5.8	6.4	6.4	5.0	3.8
L (10 ³⁴ cm ⁻² s ⁻¹)	0.75	1.2	2.0	0.2	0.22	0.7	1.5	0.25	0.27	1.0	2.0

SB2009 new beam parameters

	200	250	350	500	1000
Rate (Hz)	10	10 <mark>(5)</mark>	5	5	4
Δp/p(e-)(%)	0.22	0.22 <mark>(0.220)</mark>	0.22(0.218)	0.21 <mark>(0.207)</mark>	0.11
Δp/p(e+)(%)	0.17	0.14 <mark>(0.130)</mark>	0.10(0.093)	0.07 <mark>(0.065)</mark>	0.04
β _x *(mm)	16	12 <mark>(21)</mark>	15	11	30
$\sigma_x^*(mm)$	904	700 <mark>(927)</mark>	662	474	554
σ _y *(mm), wTF	6.0	5.3 <mark>(6.4)</mark>	4.5 (5.0)	3.8	2.7
L(x10 ³⁴ cm ⁻² s ⁻¹),wTF	0.5	0.8 <mark>(0.27)</mark>	1.0	2.0	2.8 ^[2]

[1]parameters different from sb2009 are listed. Values in () are SB2009 values.[2] Luminosity without traveling focus.

Miyamoto-san's slide at ILD optimization meeting 2010. Sep. 08