Study of Higgs Selfcouplings at ILC

J. Tian (Tsinghua U.)
Y. Takubo (Tohuko U.)
K. Fujii (KEK)
Y. Gao (Tsinghua U.)

status

 checking the statistical independences for both IIHH and nnHH analyses.

 investigating the generation of full simulated backgrounds llbbH and vvbbH which are not considered yet.

strategy used now for neural-net

- totally, one sample for every signal and every background.
- for each neural-net training, both signal sample and background sample are randomly selected into two halves: one for training, one for testing.
- finally while evaluating the efficiencies of signal and backgrounds, the whole samples (include training and testing events) are used.

considerations:

- there are several neural-net training in one analysis, it's better to use independent signal samples for each neural-net.
- while evaluating the efficiencies, the training samples should not be included. but if both the training and testing samples could be eliminated , it should be OK. for signal and survived backgrounds, we should use independent testing samples.

need to do

- increase at least three times signal statistics, then we can use one independent sample for each neural-net. (IIHH 3 times, nnHH twice)
- increase the background statistics and separate them into training samples and testing samples, then we can only use the testing samples to evaluating the efficiencies. (IIbb, IIbbbb, nnbbbb, possible lvbbqq)
- now the llHH, nnHH samples are prepared, still generating llbb (expected 316K...), llbbbb, nnbbbb

Part II

problems about the full simulation with Physsim

problems about stdhep

 using Miyamoto-san's JSF framework, the stdhep file can be successfully generated. But from the particles list, there are some wrong mother-daughter relation ships in case of Higgs concerned generators.

Z	Ъ	Event	listing	(HEP format)			Event	:	99				
	I	particle/jet	ISTHEP	IDHEP	JMOH	EP	JDA	HEP	PHEP(1,I)	PHEP(2,I)	PHEP(3,I)	PHEP(4,I)	PHEP(5,I)
	1	(H_10)	2	25	0	0	0	-1	60.75512	-24.07762	8.47056	136.90385	120.00000
	2	(ZO)	2	23	0	0	3	4	-60.75512	24.07762	-7.60404	112.52689	91.28836
	3	(nu_e)	2	12	2	0	0	-1	-72.37788	16.75378	-34.81501	82.04470	0.00000
	4	(nu_e~)	2	-12	2	0	0	-1	11.62277	7.32384	27.21097	30.48220	0.00000
	5	!H 10!	13	25	3	0	0	0	60.75512	-24.07762	8.47056	136.90385	120.00000
	6	(W+)	2	24	5	0	8	9	72.10799	-10.33225	-6.34192	107.28300	78.50546
	7	1W-1	13	-24	5	0	10	11	-11.35287	-13.74537	14.81248	29.62085	18.44349
	8	e+	1	-11	6	0	0	0	47.46394	32.09433	-9.66548	58.10588	0.00051
	9	nu_e	1	12	6	0	0	0	24.64405	-42.42658	3.32356	49.17713	0.00000
	10	ls!	13	3	7	0	0	0	-9.22176	2.11457	4.21949	10.37142	0.50000
	11	lc~1	13	-4	7	0	0	0	-2.13111	-15.85994	10.59299	19.24943	1.50000
	12	(S)	2	3	10	0	14	14	-9.22176	2.11457	4.21949	10.37142	0.50000
	13	(C~)	2	-4	11	0	14	14	-2.13111	-15.85994	10.59299	19.24943	1.50000
1		Event	- listing	(HEP format	,		Event		1				
		L Dvon	c ribting	(IIII LOIMAC	,		LVOIR	•	-				
	I	particle/jet	ISTHEP	IDHEP	JMOR	HEP	JDA	HEP	PHEP(1,I)	PHEP(2,I)	PHEP(3,I)	PHEP(4,I)	PHEP(5,I)
	1	(H 10)	2	25	0	0	0	-1	64.76461	36.89882	-85.27080	165.00632	120.00000
	2	(ZO)	2	23	0	0	4	5	-20.93803	74.93719	-46.09124	128.13017	90.76869
	3	(Z0)	2	23	0	0	6	7	-43.82658	-111.83601	135.70969	202.97218	91.39216
	4	(e-)	2	11	2	0	0	-1	-52.27536	39.18375	-5.40356	65.55363	0.00051
	5	(e+)	2	-11	2	0	0	-1	31.33734	35.75344	-40.68767	62.57654	0.00051
	6	(b)	2	5	3	0	0	-1	-46.32804	-126.68961	118.36577	179.52463	4.70000
	7	(b~)	2	-5	3	0	0	-1	2.50146	14.85360	17.34391	23.44756	4.70000
	8	lbl	13	5	$\begin{pmatrix} 1 \end{pmatrix}$	0	0	0	-46.32804	-126.68961	118.36577	179.52463	4.70000
	9	!b~!	13	-5		0	0	0	2.50146	14.85360	17.34391	23.44756	4.70000
	10	<pre>!gen. code!</pre>	13	94	8	0	11	12	-43.82658	-111.83601	135.70969	202.97218	91.39217
	11	lbl	13	5	10	0	0	0	-32.17294	-87.78651	82.77557	125.47591	12.28167
	12	1b~1	13	-5	10	0	0	0	-11.65365	-24.04950	52.93412	77.49628	49.89456
	13	1b1	13	5	11	0	0	0	-28.83106	-70.58688	67.73966	102.29365	7.84792
	14	1g1	13	21	11	0	0	0	-3.34188	-17.19963	15.03590	23.18226	2.08411
	15	!b~!	13	-5	12	0	0	0	-8.46566	12.69089	19.39651	26.00661	8.20933

problems about framework

- using Miyamoto-san's JSF framework, the stdhep file can be successfully generated, no matter how many events specified.
- using my JSF framework (20101024), stdhep file could be generated if I specified small number of events (about 100). If 10,000 events specified, every time the generation will be stopped at some event (only for Higgs concerned generators):

Error: Symbol G_exception is not defined in current scope sim.C:49:

Error: type G__exception not defined FILE:/data17/jlc/tianjp/lcsoft/physsim/20101024/higgs/ZZHStudy++/prod/./sim.C LINE:49
*** Interpreter error recovered ***
Processed event 3289 End event 3289

differences between Miyamoto-san's and my JSF framework

	my	Miyamoto-san's
clhep	2.0.4.0	2.0.4.3
java	1.5.0_14	1.4.2_12
geant4	4.9.1.p03	4.9.2.p01

problems emerged in Mokka

- using Miyamoto-san's JSF framework, the stdhep file can be successfully generated, then be passed to Mokka.
- however, for ZZH and ZHH stdhep file, Mokka stopped after a few events:

Mokka: src/HepLClOInterface.cc:307: virtual void HepLClOInterface::GeneratePrimaryVertex(G4Event*): Assertion `mcpIT != Map.end()' fa iled. tmp/DST06-07-p01_kek-ppr004_pythia_physsim_e1e1bbh_01_s001.sh: line 2: 17009 Aborted

summary

- only full simulation of ZH with Physsim was successful, though there is wrong mother-daughter relation in the stdhep file.
- stdhep files of ZZH, ZHH though can be generated, but couldn't be simulated by Mokka
- Non-Higgs processes ZZZ, WWZ are OK.
- what should I investigate?

backup

correlation check between each neural-net output

Correlation Matrix (signal)

due to the careful choice of variables in each neural-net training, the correlation is relatively small.