

# Pions in the SiW ECAL using FNAL 2008 data (CAN-025)

Philippe Doublet Roman Pöschl François Richard

CALICE Analysis Meeting, November 8th, 2010

### Introduction

- Interactions of pions in the SiW ECAL
- Aim to use granularity and energy deposition to classify interactions
- And have a look at differences between models in physics lists

 CAN paper v2 submitted, now finalising answers to the questions of the EB

### Data samples

- We study and compare interactions of pions
   (π<sup>-</sup>) with E = 2, 4, 6, 8 and 10 GeV
- TB data were recorded at FNAL in 2008 and reconstructed (v0409)
- MC data are simulated + digitised for 5 physics lists : QGSP\_BERT, FTFP\_BERT, LHEP, QGS\_BIC and QGSP\_BIC (Geant4 9.2)
- Calice soft v02-00 is used for both TB and MC data

### Outline

- The SiW ECAL (in 2008)
- The test beam at FNAL (May & July 2008)
- MC simulations
- Finding the interaction point
- Classification and optimisation
- Observables
- Ongoing work
- Conclusions

Important slides for today's meeting topic

#### The SiW ECAL in 2008

- Fully equipped ECAL
- 3 x 3 wafers of 6 x 6 pads
- Sensors = Si pixels of 1 cm x
   1 cm → tracking possibilities
- Absorber = W
- 30 layers in 3 different stacks :
  - 1.4 mm of W
  - 2.8 mm
  - 3.6 mm

•  $\approx 24 X_0 \approx 1 \lambda_1 \approx$  half of the hadrons interact inside the ECAL volume



Picture of the fully equiped SiW ECAL



- 3 CALICE calorimeters installed : SiW ECAL, Analogue HCAL, TailCatcher (TCMT)
- Triggers : scintillators, Cherenkov counters
- Muon cuts added on the basis of simulated muons : < 0.6% remaining</li>
- Ask for only one primary track found with the MipFinder
  - Events left:
     E (GeV)
     2
     4
     6
     8
     10

     N evts
     212942
     126222
     73590
     233820
     454714

### **Monte Carlo simulations**

- For comparisons, different physics lists were simulated in Geant4 9.2
- QGSP BERT is used as reference for optimisation

| E (GeV)   | 2                                     | 4 | 6 | 8          | 10 |
|-----------|---------------------------------------|---|---|------------|----|
| QGSP BERT | BERT                                  |   |   | BERT + LEP |    |
| QGS BIC   | LEP (+ BIC for secondaries < 1.2 GeV) |   |   |            |    |
| QGSP BIC  | LEP                                   |   |   |            |    |
| LHEP      | LEP                                   |   |   |            |    |
| FTFP BERT | BERT FTFP                             |   |   |            |    |

Content of the physics lists for pions

### A look at interactions of hadrons



- Picture of a generic interaction in the calorimeters :
  - 1) A primary track enters the detector (« MipFinder »)
  - 2) The interaction occurs
  - 3) Secondaries emerge from the interaction zone

## Visual examples (1/2)

 2D profiles of an event at 10 GeV in the SiW ECAL

 High energy deposition when the interaction starts

- Interaction layer confirmed by visual inspection
- Large number of secondaries created
- Equation to be satisfied:

 $E_i > \text{Ecut}$ ,  $E_{i+1} > \text{Ecut}$ ,  $E_{i+2} > \text{Ecut}$ 

direction (pad number



### **Visual examples** (2/2)

- Previous example not always valid, especially at low energies
- Sometimes, slow increase in energy
- Here, local energy deposition
- Quantified by the relative increase in energy:



### Classification



Works here and meant for small energies

#### Event view of the « FireBall » type at 10 GeV

z direction (layer number)

z direction (layer number)

### Classification



« Pointlike » type at 2 GeV

### Classification

- High energy deposition
   → « FireBall »
- Increase continues + veto for backscattering → « FireBall »
- Local increase  $\rightarrow$  « Pointlike »
  - Others = non interacting
    - « MIP »
    - « Scattered »
- Remark : delta rays are naturally included in « Pointlike » but contribute less than 4%



#### Real TB data event at 2 GeV



#### Event view of the « Scattered » type at 2 GeV

### Optimisation

 Cuts need to be optimised (not discussed today, see my talk at <u>CASABLANCA</u>)

- After optimisation  $\rightarrow$
- Choice was made to merge all Fcut to one single value for simplicity

| E (GeV) | Ecut | Fcut               |
|---------|------|--------------------|
| 2       | 3    | 4 → 6              |
| 4       | 8    | 5.5 <del>→</del> 6 |
| 6       | 10   | 6.5 <b>→</b> 6     |
| 8       | 13   | 7 <del>→</del> 6   |
| 10      | 10   | 6 <del>→</del> 6   |

### Efficiencies after optimisation

- The efficiency to find the true interaction layer within ±1 and 2 layers is the result of the optimisation.
- It is compared with another method.

| E (GeV) | η (±1) | η (±2) | η (3-4, ±2) |
|---------|--------|--------|-------------|
| 2       | 56 %   | 67 %   | 28 %        |
| 4       | 60 %   | 73 %   | 61 %        |
| 6       | 62 %   | 76 %   | 69 %        |
| 8       | 64 %   | 78 %   | 71 %        |
| 10      | 72 %   | 84 %   | 76 %        |

### **Rates of interactions**





### Observables

- The following results are still under discussion with the EB
- We compare TB data and MC using
  - Rates of interactions (previous slide)
  - Mean shower radius (rms of transverse profile)
  - Longitudinal profile

     (as defined in the CALICE
     pions in the SiW ECAL paper)





### Examples

#### Mean shower profile (log)

#### Longitudinale profile



Example of data vs QGSP\_BERT simulation at 2 GeV

### Ongoing

- Agreement with hadrons in SiW ECAL paper
- Redoing style of the figures
- Text improvement on comparison data MC
- Quantitative check of systematics of optimisation with physics lists
- Write a new version of the note

### Conclusions

- Interactions of hadrons in the SiW ECAL at energies from 2 GeV to 10 GeV are found and classified into 4 kinds, using energy deposition and high granularity
- Efficiencies to reconstruct the interaction layer within ± 2 layers are > 67 %
- Still answering to the EB (good progress)
- Hope for a validation before the end of the year