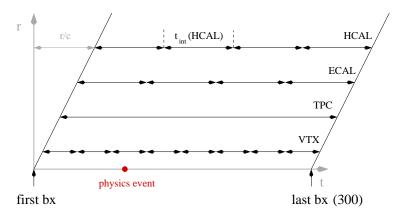
An(other) Overlay Processor in Marlin

Peter Schade

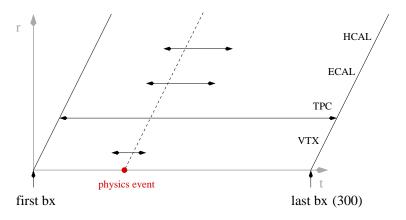
02.11.2010


Problem

- · overlay beam background events to an physics event
 - \hookrightarrow for a random position of the 'physics event BX' in BX train \hookrightarrow respecting the integration times of the sub detectors

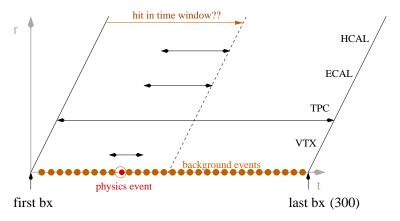
assumptions:

 \hookrightarrow each sub detector has specific integration time Δt_i


 \hookrightarrow each sub detector is read out $t_{\text{train}}/\Delta t_i$ times

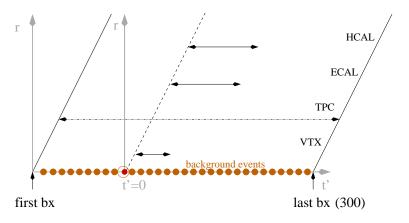
• assumptions:

 \hookrightarrow each sub detector has specific integration time Δt_i


 \hookrightarrow each sub detector is read out $t_{\text{train}}/\Delta t_i$ times

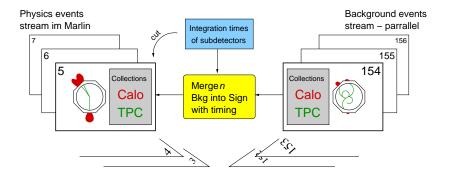
• assumptions:

 \hookrightarrow each sub detector has specific integration time Δt_i


 \hookrightarrow each sub detector is read out $t_{\mathsf{train}}/\Delta t_i$ times

assumptions:

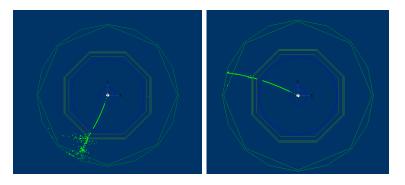
 \hookrightarrow each sub detector has specific integration time Δt_i


 \hookrightarrow each sub detector is read out $t_{\mathsf{train}}/\Delta t_i$ times

• set physics event at t' = 0 and overlay 'one integration time' 2010-11-02 P. Schade 3/7

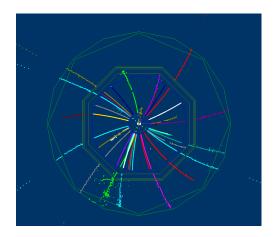
Overlay Processor

- for each physics event, dice a position in bunch train
- overlay *nBunchtrain* events form the background stream

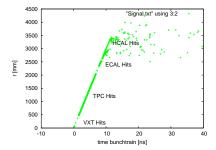


Example: Signal and background separated

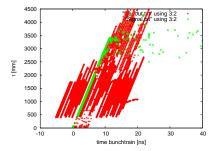
- simulated in Mokka:
 - \hookrightarrow one single pion event as signal
 - \hookrightarrow many muons events as background


signal

background


Example: Signal and background overlayed

- assumed: bunch train with 40 BXs
- physics event in BX 13


Example: Overlay timing structure

- integration times:
 - \hookrightarrow TPC: full train VDX: 5 $\rm ns$ ECAL: 10 $\rm ns$ HCAL: 10 $\rm ns$
 - \hookrightarrow timing: physics event per def. set to BX time 0

Example: Overlay timing structure

- integration times:
 - \hookrightarrow TPC: full train VDX: $5\,\mathrm{ns}$ ECAL: $10\,\mathrm{ns}$ HCAL: $10\,\mathrm{ns}$
 - \hookrightarrow timing: physics event per def. set to BX time 0

• physics event was put into the 13th bunch crossing \hookrightarrow bunch train starts at $t_{\text{start}} = -13 \times 0.5 \,\text{ns} = -6.5 \,\text{ns}$

2010-11-02

Problem: TPC Hits

- at the moment:
 - \rightarrow total bunch train of TPC hits overlayed with drift
 - $\hookrightarrow \mathsf{probably too pessimistic}$
- problem:
 - \rightarrow overlayed tracks of later Bxs get z < 0
- if time stamping with the TPC is possible
 - \rightarrow overlay 5 events, two before, two after physics event
 - \rightarrow all tracks unshifted in space

Outlook

- Overlay Marlin Processor in the making
 → overlaying already works in principle
 → need testing
- comparison between Christian's and Peter's processors to do
- merge with existing software ??