Study on Anomalous Couplings in H→WW*

'10 11/17 Y. Takubo (Tohoku U.)

K. Ikematsu(KEK), N. Okada(Alabama U.), Niel Hodgkinson(Valencia U.), K. Fujii(KEK)

Higgs anomalous coupling with W

Η

In SM, Higgs bosons couple to particle masses.

> The branching ratio depends on the particle masses.

• The new physics might contribute to the anomaly of Higgs coupling with gauge bosons as the loop effect.

 \rightarrow We focus on the coupling with W.

• Anomalous couplings: Scale factor to the SM coupling, CP even/odd term

> Λ : Energy scale for the new physics (1TeV for this study)

$$\mathcal{L} = 2m_{\mathrm{W}}^{2} \left(\frac{1}{v} + \frac{a}{\Lambda}\right) H W_{\mu}^{+} W^{-\mu} + \frac{b}{\Lambda} H W_{\mu\nu}^{+} W^{-\mu\nu} + \frac{\tilde{b}}{\Lambda} H \varepsilon^{\alpha\beta\mu\nu} W_{\mu\nu}^{+} W_{\alpha\beta}^{-\mu\nu}$$

Physics variables sensitive to anomaly

$$\mathcal{L} = 2m_{\mathrm{W}}^2 \left(\frac{1}{v} + \frac{a}{\Lambda}\right) H W^+_{\mu} W^{-\mu} + \frac{b}{\Lambda} H W^+_{\mu\nu} W^{-\mu\nu} + \frac{\tilde{b}}{\Lambda} H \varepsilon^{\alpha\beta\mu\nu} W^+_{\mu\nu} W^-_{\alpha\beta}$$

- W momentum at Higgs rest-frame: a, b
- Jet angle at W rest-frame: b, btilde

• Angle of W decay planes: b, btilde **The sensitivity to the anomalous coupling was studied by using these physics variables.**

Analysis of $H \rightarrow WW^*$

Analysis mode

- Signal: ZH $\rightarrow \nu\nu WW \rightarrow \nu\nu qqqq$ (2.7fb)
- BG: 4 fermion final states
 - > qqvl (1,199fb), vvqq (255fb), ...

Analysis conditions

- CM energy: 250GeV
- Higgs mass: 120 GeV (BR($H \rightarrow WW^*$) = 15.0%)
- Int. luminosity: 250fb⁻¹
- Beam polarization: 80% right-handed(e⁻), 30% left-handed(e⁺)
- Analysis data:
 - > Physsim for the signal
 - > LOI data for BG.

Event reconstruction

- All events are reconstructed as 4-jet events.
- The jets are paired to have masses of Higgs and on-shell W.

Many BGs contaminate in the signal region. \rightarrow The selection cuts were applied.

Rejection of SM-BG

- Higgs mass: $110 < M_H < 130 GeV$
- Missing mass: $70 < {}^{miss}M < 140 GeV$
- Higgs angle: $|\cos\theta_{\rm H}| < 0.95$
- Y-value: Y- > 0.0005
- Track energy: E_{trk} <30GeV

- SM-BG was rejected effectively.
- ZH-BGs are problem since they contaminate in the signal region.
- \rightarrow Rejection of ZH-BG was studied.

	Bf. cut	Aft. cut
$ZH \rightarrow \nu\nu WW(4j)$	680	540
ZH→others	9,953	4,286
SM-BG	1,935,671	11,596

Rejection of ZH-BG

b-tag was applied to reject $H \rightarrow bb$ events.

- # of b-tagged jets: N_b <= 1
- # of b-tagged jets after 2-jet _reconstruction: N_b(2jet) = 0

- ZH-others: 1,006
 - SM-BG: 10,127

ZH-BG was suppressed to ¹/₄.

Likelihood analysis

The likelihood analysis was used.

- Likelihood: L = L(S)/(L(S) + L(BG))
- Input variables: ^{miss}M , $cos\theta_H$, Y, N_b, # of charged tracks
- The signal and BG were separated clearly.
- \rightarrow Likelihood cut position (L_{cut}) was optimized.

Optimization of likelihood cut

L_{cut} was set to maximize the signal significance.

• Signal significance: 7.6 (@ $L_{cut} > 0.79$)

 \rightarrow The physics variables sensitive to the anomalous couplings were reconstructed.

	Aft. cut
$ZH \rightarrow \nu\nu WW(4j)$	348
ZH→others	408
SM-BG	874

W momentum and jet angle

The distributions were obtained.

- At first, the following variables were reconstructed.
- W momentum at Higgs rest-frame
- Jet angle at W rest-frame
- \rightarrow Angle between W decay planes was reconstructed.

Angle between W decay planes

Angle between W decay planes at Higgs rest-frame was reconstructed.

- The angle corresponds to angle between two up-type quarks.
- Two c-jets were selected by using c-tag.
 - > Efficiency of $ZH \rightarrow vvWW \rightarrow vvcscs: 88\%$
- The angle was calculated by using c-tagged jets.

	Bf. c-tag	Aft. C-tag
ZH→vvcscs	81	71
ZH→others	675	475
(vvudud)	(267)	(187)
SM-BG	1,367	874

BG estimation

• SM-BG was estimated by fitting the Higgs mass distributions for each bins of the distributions.

 \rightarrow Distributions for ZH events were obtained.

• It is assumed that the contamination of ZH-BG can be evaluated by measurement of Higgs branching ratio for each decay mode.

Acceptance correction

The acceptance correction was applied to compare the theoretical distributions with the anomalous couplings.

• Acceptance : Detector + Selection cut

 \rightarrow The sensitivity to the anomaly was evaluated by comparing the number of events and distribution shape.

Sensitivity to the anomalous coupling

Sensitivity to the anomaly was evaluated by comparing SM events.

• The probability contour was made for the 2 parameters.

> The remaining 1 parameter was set to 0.

• Two allowed region exits since the SM coupling cancels with a=-4.1.

$$\mathcal{L} = 2m_{\mathrm{W}}^2 \left(\frac{1}{v} + \frac{a}{\Lambda}\right) H W^+_{\mu} W^{-\mu} + \frac{b}{\Lambda} H W^+_{\mu\nu} W^{-\mu\nu} + \frac{\tilde{b}}{\Lambda} H \varepsilon^{\alpha\beta\mu\nu} W^+_{\mu\nu} W^-_{\alpha\beta}$$

Comparison of this result with physics model is the next step.

Summary

- The new physics might contribute to the anomaly of Higgs coupling with W bosons.
- Sensitivity to the anomaly was studied by using $ZH \rightarrow vvWW \rightarrow vvqqqq$ events
- After the selection cuts, sensitivity to the anomaly was evaluated with the physics variables sensitive to the anomaly.
 - > W momenta at the Higgs rest-frame
 - > Jet angle at W the rest-frame
 - > Angle between W decay planes
- Comparison of the result with physics models is the next step.

Cut summary

of events at each selection cut is summarized.

	$\nu\nu$ H(H \rightarrow WW* \rightarrow 4j)	vlqq	vvll	1111	vvqq	llqq	qqqq
No cut	10,634(680)	299,866	103,704	753,964	63,649	335,762	378,726
110 <m<sub>H<130GeV</m<sub>	6,191(614)	34,540	6,057	16,561	2,361	5,488	518
70 <missm<140gev< td=""><td>6,134(607)</td><td>17,211</td><td>5,405</td><td>6,605</td><td>2,308</td><td>2,596</td><td>168</td></missm<140gev<>	6,134(607)	17,211	5,405	6,605	2,308	2,596	168
$ \cos \theta_H < 0.95$	5,863(581)	15,043	4,910	1,144	2,088	934	17
Yminus>0.0005	5,176(580)	12,593	81	514	1,695	890	16
Etrk <30GeV	4826(540)	9,386	4	62	1,389	740	15
Nb<=1	2,175(520)	8,692	4	46	1,157	433	10
Nb(2jet)=0	1,518(512)	8,571	3	46	1,090	409	8
L>0.79	756(348)	1,063	0	0	207	94	3
Nc =2	546(258) (cxcx: 71)	692	0	0	110	70	2

Missing mass

• 70 GeV < missM < 140 GeV was selected.

Higgs angle

• $|\cos\theta_{\rm H}| < 0.95$ is selected.

Ymin

• $Y_{min} < 0.0005$ is selected.

Maximum track energy

• $E_{trk} < 30 GeV$ is selected.

of b-tagged jets

• $N_b \ll 1$ is selected.

of b-tagged jets (2-jet reconstruction)

- $N_b(2jet) = 0$ is selected.
- Since only the jet events remain for ZH events, it is difficult to select further $H \rightarrow WW \rightarrow 4$ jet/cscs.

Performance of flavor tagging

Contribution from WW-fusion process

100% right-handed

- $v_e v_e H$: 21.7 fb
- $\nu_{\mu}\nu_{\mu}H$: 21.6 fb
- $\nu_{\tau}\nu_{\tau}H$: 21.7 fb

- The measurement accuracy of $BR(H \rightarrow WW)$ might be able to improve by using WW-fusion.
- However, BG is 10 times larger for left-handed
- polarization than right-handed.
 - Separation of missing mass distribution is key point.

Higgs anomalous coupling with W

- WW-fusion makes events with larger missing mass.
- The separation from ZH events is not clear.
- \rightarrow Improvement of the background rejection can not be expected.
- → WW-fusion is not useful for study at $E_{CM} = 250$ GeV.

