ZH Branching ratio study at 350 GeV

ILC physics and software meeting Nov. 19. 2010 H. Ono (NDU)

Current status

- IIH mode analysis
 - IIH lepton ID + di-jet clustering is re-applied for DST file
 - Sorry to occupy CPU nodes for a long time
 - Next : Optimize selection criteria for 350 GeV and apply BG reduction and evaluate BR measurement accuracy
- Compare with luminosity scaling
 - beam parameter dependence is checked for 250 and 350
 GeV

IIH mode analysis

BG reduction should apply after the di-lepton identification

Signal : eeH/µµH	Mode	Ecm=250GeV	Ecm=350GeV		
BG : llqq, vlqq	ШΗ	34.60 fb	25.25 fb		
	(eeH/μμH/ττH)	(12.55/11.66/10.39 fb)	(10.96 /7.16/7.14 fb)		

t-channel diagram contribution

Peak luminosity dependence

Luminosity difference is considered with following beam parameters

Reference value : $L_{peak} = 2.0 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$, $L_{int} = 500 \text{ fb}^{-1}$ at RDR 500 GeV

	RDR (L	.01)		SB200	9 w/ T	F	NB w	/TF	
Ecm (GeV)	250	350	500	250	350	500	250	350	500
Peak L (10 ³⁴ cm ⁻² s ⁻¹)	0.75	1.2	2.0	0.27	1.0	2.0	0.8	1.0	2.0
Integrated L (fb ⁻¹)	187.5	300	500	67.5	250	500	200	250	500

NB : New baseline parameter

Production cross section with beam polarization (e+,e-)=(+30%, -80%)

Di-jet mass (M_H) distribution

Di-jet mass reconstruction after the di-lepton identification

Larger cross section in eeH at 350 GeV from the t-channel contribution

Smoothness difference comes from lower statistics in 350GeV sample

Di-lepton mass (M_z) distribution

Di-jet mass reconstruction after the di-lepton identification

Recoil mass (M_H) distribution

<u>No treatment for the beam energy spread and ISR/Brems. photons.</u> Significant advantage for the Higgs mass/x-section measurement with the <u>recoil mass</u> from the narrower distribution in 250 GeV

Comparison with recoil mass study

arXiv:1007.3008v1 [hep-ex]

Backup

eeH mode di-lepton mass distribution

μµH mode di-lepton mass distribution

No significant difference is observed in $Z \rightarrow \mu\mu$ distribution

Mode	Ecm=250GeV	Ecm=350GeV
eeH/μμΗ/ττΗ	12.55/11.66/10.39 fb	10.96/ <mark>7.16</mark> /7.14 fb

eeH mode

Recoil mass distribution after di-electron ID

vvH sample luminosity comparison

Higgs candidate di-jet mass distribution without selection criteria

because of increasing the t-channel contribution at 350 GeV (Larger x-sec)

qqH sample luminosity comparison

Higgs candidate di-jet mass distribution without selection criteria

IIH analysis is still on-going, next compare with recoil mass distribution