

PFA diagnostics @ 100, 200, 350 & 500 GeV

R. Cassell, M. Charles, <u>G. Halladjian</u>, U. Mallik, R. Zaidan December 2nd, 2010

Outline

Comparison for 100, 200, 350 & 500 GeV:

- Energy fractions
- Sub-clusters purities
- Link variables
- Link score
- Shower energy residual
- Shower efficiency and purity

Energy fractions

- Photon as predicted at low energy. At high energies, the energy reconstructed as photons is lower because of the overlaps, therefore more photon veto.
- Mips fraction is higher for low energies.
- Leftovers fraction is higher for low energies (low global density).

Sub-clusters purities

As expected the purity increase when energy decrease (less overlaps at low energy).

All sub-clusters purities

Any Cluster

Link variables

At high energy where the shower is large, links between sub-clusters at opposite side of the same shower are background-like. Therefore, less discrimination power.

Link score

At high energy where the shower is large, links between sub-clusters at opposite side of the same shower are background-like. Therefore, less discrimination power.

Shower energy residual

Normalized Residual

Shower efficiency and purity

Conclusion

Starting from \sqrt{s} = 350 GeV, the overlapping showers cause problems for the PFA in many aspects.

Next step: I will work on the improvement of the scoring.