Status of Analysis for Tungsten HCAL Test Beam at CERN

A. Münnich

13.12.2010, CALICE Analysis Meeting

Overview

- Test Beam Setup
- Cherenkov Counters
- Status of Work on Calibration
 - Inter Calibration
 - MIP Calibration
 - Gain Calibration
 - Dead and Noisy Channels
- Simulation Status

What is different with Tungsten

- More contained showers → less leakage with same depth
- Smaller shower diameter → better separation of showers

Goal: Experimental verification

- So far: Tungsten used in ECALs typically 1 λ deep
- No experience with tungsten HCALs 4-9 λ
- Simulation of hadronic showers in tungsten not validated
 - No MC/data comparisons
 - No validation for high granularity
 - Low energy neutrons → effect time structure of shower
 - → requirements for time stamping

Final Goal:

Good energy resolution with Particle Flow using the whole detector

W-HCAL

Absorber Material

30 plates of 1 cm thick tungsten: λ_{int} (W) = 10 cm , X_0 (W) = 0.35 cm

Compared to steel:

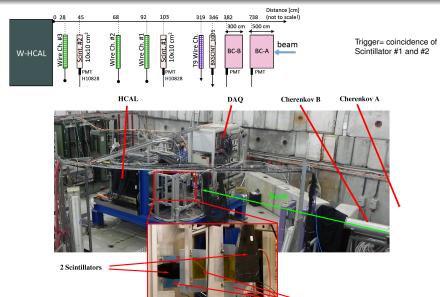
- Less visible energy (ionization)
- More neutrons (spallation, slow)

Active Material

- Scintillator tiles: 3x3 cm², 6x6 cm²
- Light collection via WLS fibres readout using multi-pixel SiPMs

Beam at CERN/PS (T9) and Data Sets

19 days of data taking


- Typical working mode: 2-3 spills per 45 seconds, 24-33 Hz DAQ rate
- 20 million events with energies between 2 and 10 GeV at 1 GeV intervals, positive and negative polarity

Particle Mix in T9							
p(GeV/c)	e ⁺ [%]	π^+ [%]	p [%]				
2	55	30	15				
3	30	50	20				
4	15	60	25				
5	10	60	30				
6	5	55	40				
7	5	50	45				
8	0	45	55				
9	0	40	60				
10	0	40	60				

Test Beam Setup

3 Wire Chambers

Beam Instrumentation: Cherenkov I

Setup

- 2 Cherenkov counters for particle ID to be used offline to select between electrons, pions and protons
- Gas: C0₂, Cherenkov A: 3m long, Cherenkov B: 5m long
- Pressure limit is 3 bar

	Cherenkov threshold (atm)							
Momentum (GeV/c)	electron	muon	pion	kaon	proton			
1.00	0.0004	13.23	23.02	348.82	880.9			
2.00	0.0001	3.31	5.78	76.13	248.1			
3.00	0.0000	1.47	2.57	33.06	113.3			
4.00	0.0000	0.83	1.45	18.45	64.4			
5.00	0.0000	0.53	0.93	11.76	41.4			
6.00	0.0000	0.37	0.64	8.15	28.8			
7.00	0.0000	0.27	0.47	5.98	21.2			
8.00	0.0000	0.21	0.36	4.58	16.3			
9.00	0.0000	0.16	0.29	3.61	12.9			
10.00	0.0000	0.13	0.23	2.93	10.4			

Beam Instrumentation: Cherenkov II

Note:

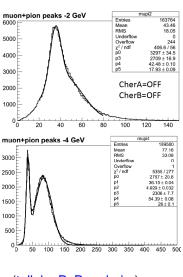
Online code uses too narrow search window for trigger time. Use offline code for Cherenkov Flags.

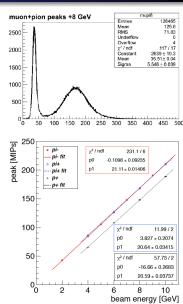
Rule of Thumb for Most Common Pressure Settings

A off: Suppresses electrons

B on: Selects muons

Both off: Protons (only for positive E)

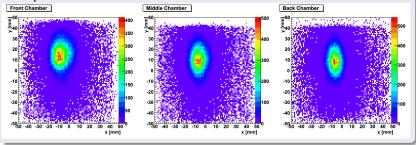

Muon and pion peaks overlap at lower energies!


Example of particle selection:

E	Cher A	Cher B	particle selection			
[GeV]	[bar]	[bar]	μ	$\mu + \pi$	р	
-2	1	3	A off & B on	A off & B off	-	
-4	0.6	3	-	A off & B on	-	
-8	0.25	3	-	A off & B on	-	
-10	0.2	3	-	A off & B on	-	
4	0.6	3	-	A off & B on	A off & B off	
8	0.35	3	-	A off & B on	A off & B off	
10	0.2	3	-	A off & B on	A off & B off	

Cherenkov: First Results

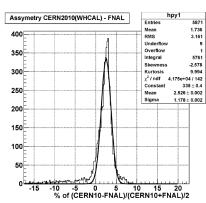
(talk by D. Dannheim)


Beam Instrumentation: Tracking

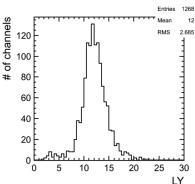
Setup

3 wire chambers to measure the beam profile and provide extrapolation to HCAL

Status

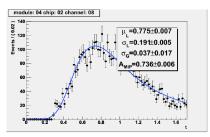

Code is finished.

Needs tuning of error matrices in DB for efficiency (at the moment at 70%).


Status of Inter Calibration

- First version of IC constants for CERN 2010 obtained
- Idea: Use values obtained in T9, and the one from T7 as systematics

Shape of IC distribution similar to FNAL Shift to higher IC values


Light yield just for one run \rightarrow mean of 12 (before: LY=13)

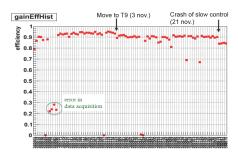
(talk by J. Zalesak)

Status of MIP Calibration

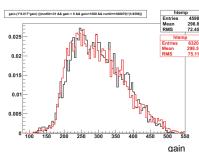
- Updated and improved performance of the code from Andrea
- Previously: No MIP cut applied
 Now (due to technical reasons of disk space):
 Apply 0.3 MIPs cut (based on CERN 2007 old calibrations)
 - \rightarrow introduces no bias as verified by Andrea

Obtained 74% from the old MIP value

Next Steps:

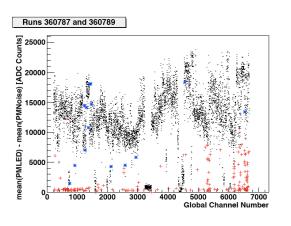

- Understand shift in MIP value
- Check influence of angle for the MIP finder (in T7, muons have 3-4 degrees)
- Extract MIP values for all muon runs

(talk by C. Grefe)


Status of Gain Calibration

- First values already in DB (help from N. Feege and C. Guenter)
- Docu at https://twiki.cern.ch/twiki/bin/view/CALICE/CERN2010

- Dead modules after move from T7 to T9 and
- Crash of slow control effected gain

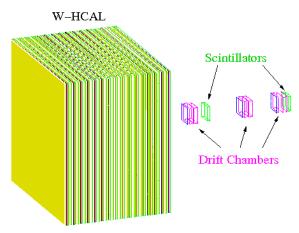

Values similar with FNAL ones (corrected for temperature)

(talk by E. Van der Kraaij)

Status of Noisy/Dead Channels

- Cleaning up of code and move to use of ROOT trees in progress
- Decision of best definition of noisy/dead in progress
- New values for DB within 1 week possible

- Red: Dead channels (RMS(PMNoise) < 20.5)
 - Blue: Noisy channels (RMS(PMNoise) > 130)
- Many channels with mean < 6000
- Module 15 is completely off (ch. 3200 - 3400)


(talk by M. Killenberg)

Status of Simulation

Mokka model implemented:

TBCern2010 (build with the help of Gabriel Musat)

talk by J. Nardulli

Summary & Issues

First preliminary full set should be available within 1-2 weeks

Issues: Analysis

- Understand IC shift to higher values
- Understand the 30% shift in MIP value
- Investigate problems with some channels during calibration
- Understand proton data selection
- Effect of slow control crash on data

Issues: Hardware

- Dead modules 6 and 15 after move to T9, check LED?
- Slow control crash: Replace the old machine?
- Temperature sensors: Calibration lost after slow control crash