# Updated longitudinal profiles in the SiW ECAL

Calice Analysis 13/12/10





# What is the change?

- For the EUDET note, Erika proposed to present longitudinal energy profiles for both ECAL and AHCAL in units of λ<sub>int</sub>, to facilitate comparison.
- Non-trivial for ECAL because of non-uniform sampling. In the paper we used instead layer number w.r.t. shower start, inserting 1 or 2 "pseudolayers" between physical samplings in stacks 2 and 3 respectively.
- First find the effective pion λ<sub>int</sub> between sampling layers.
   Use GEANT4 MC to find the fraction of pions which have a true interaction point between each pair of layers.
- For each sampling layer in the reconstructed shower, compute number of  $\lambda_{int}$  since interaction layer.
- So we have a series of samples of the shower at known depths in  $\lambda_{int}$ . Interpolate to generate an energy at each bin of a profile histogram in  $\lambda_{int}$ .

Calice Analysis 13/12/10





# New version in units of $\lambda_{int}$



Calice Analysis 13/12/10



# Old version in units of (pseudo-)layers



Calice Analysis 13/12/10



### Mean shower depth

Derive moments from these distributions...



Calice Analysis 13/12/10



#### r.m.s. about the mean

FTF models favoured by our data, while CHIPS is way off.



Calice Analysis 13/12/10



## One other plot we could include



Shows the mean energy per hit, i.e. <E<sub>Ecal</sub>>/<N<sub>hits</sub>> A bit nervous about presenting distributions for number of hits because of noise, crosstalk etc.
But maybe safe enough for pions (though not for electrons)

Calice Analysis 13/12/10

